Silencing circCAMSAP1 suppresses malignant behavior of endometrial cancer by targeting microRNA-370-3p/MAPK1
Abstract
The study was conducted to figure out the function and mechanism of circular RNA circCAMSAP1 in repressing malignant behavior of endometrial carcinoma (EC) by targeting microRNA (miR)-370-3p /MAPK1. Tumor tissues and normal adjacent tissues of EC patients were harvested, and circCAMSAP1 and MAPK1 were elevated but miR-370-3p was reduced in tissues and cells of EC patients. Functional test results clarified transfection of si-circCAMSAP1 or miR-370-3p-mimic refrained cancer cell proliferation, migration and invasion, but motivated cancer cell apoptosis. Meanwhile, the amount of E-cadherin elevated and the amount of N-cadherin elevated or reduced. After co-transfection with si-circCAMSAP1 and miR-370-3p-inhibitor, miR-370-3p-inhibitor blocked si-circCAMSAP1’s therapeutic impact. Furthermore, after co-transfection of pcDNA-circCAMSAP1 and si-MAPK1, si-MAPK1 turned around the malignant effect of pcDNA-circCAMSAP1. It was testified that miR-370-3p was circCAMSAP1’s target, and inversely controlled via circCAMSAP1. Meanwhile, enhancing miR-370-3p led to repressive MAPK1, which was recognized as miR-370-3p’s downstream target. All in all, the results of this study convey silencing circCAMSAP1 refrains the malignant behavior of EC by controlling miR-370-3p /MAPK1 axis.
Copyright (c) 2023 Hai Feng Zhang, Cheng Cheng Cao, Cui Cui Nie, Ting Zhang

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acta Biochimica Polonica is an open access quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made, ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. There are no additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.