Taraxasterol inhibits inflammation in osteoarthritis rat model by regulating miRNAs and NF-κB signaling pathway
Abstract
Osteoarthritis (OA) has a high incidence rate in the elderly population and is a cause of chronic degenerative joint disease. Current therapeutic approaches to OA are effective but come with some side effects. Therefore, it is urgent to find new safe and effective OA treatments. This study aimed to clarify the function of taraxasterol (TAX) isolated from Taraxacum officinale in the papain-induced rat OA model. We observed that TAX alleviated the typical OA-caused phenomena in the joint. The expression of serum inflammatory mediators such as TNF-α, IL-6, and IL-1β was also repressed by TAX. In addition, NF-κB signaling pathway was repressed by TAX. Furthermore, two microRNAs: miR-140 and miR-146a were elevated after TAX treatment in OA rat model. Interestingly, several common targets of miR-140 and miR-146a, including HSPA4L, ST5, and ERBB4, were confirmed to be regulated by TAX. Inflammatory response related genes including S100A8, CCL3, A2M, LBP, and CCR1 were repressed by TAX in OA rat model. In summary, TAX inhibits inflammation in osteoarthritis rat model. Inflammatory mediators, NF-κB pathway and miR-140/miR-146a targets mediate the function of TAX.
Copyright (c) 2022 Zikang Xie, Bin Wang, Chong Zheng, Yuxing Qu, Jianda Xu, Bin Wang, Yi Gao, Pengfei Shen

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acta Biochimica Polonica is an open access quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made, ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. There are no additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.