Identification and partial characterization of proteolytic activity of Enterococcus faecalis relevant to their application in dairy industry
Abstract
Bacteria of the genus Enterococcus are lactic acid bacteria (LAB), which occur ubiquitous in many traditional fermented foods, especially artisanal cheeses, playing positive role in the development of cheese flavor. Moreover, several enterococci are successfully used as a pharmaceutical probiotic and some of them are able to produce bacteriocin and bioactive peptides, thanks to which the possibilities of application of enterococci in dairy technology and biotechnology are increased.
The aims of the study were to investigate the proteolytic potential and identify the key enzymes of proteolytic system of Enterococcus faecalis isolated from artisan Polish cheeses. An extracellular - secreted (E) and a cell envelope proteinase (CEP) were isolated and enzyme activity depending on bacterial growth phase was evaluated. CEP showed a higher protease activity than E and this fraction has been purified 70-fold by a method including precipitation, diafiltration and gel filtration chromatography. The molecular mass of the enzyme has been estimated to be ~25 kDa by SDS-PAGE. Maximum enzyme activity of the proteinase has been observed at pH 6,9 and 37 ºC. The enzyme was able to hydrolyze: casein, bovine serum albumin, α-lactalbumin, β-lactoglobulin, but not Leu-pNa. The results of zymography, SDS- PAGE and LC-MS-MS/MS data allowed us to identify the key enzymes of proteolytic system of E. faecalis as coccolysin and glutamylendopeptidase.
To asses microbiological safety of the tested strain, the evaluation of the presence of virulence factors and antibiotic susceptibility was also conducted.
Copyright (c) 2019 Paulina Worsztynowicz, Agnieszka Olejnik Schmidt, Wojciech Białas, Włodzimierz Grajek

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Acta Biochimica Polonica is an open access quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made, ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. There are no additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.