Acute hepatologic and nephrologic effects of calcitriol in Syrian golden hamster (Mesocricetus auratus)

  • Ewa Podgorska Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
  • Martyna Sniegocka Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
  • Marianna Mycinska Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
  • Wojciech Trybus Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
  • Ewa Trybus Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
  • Anna Kopacz-Bednarska Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
  • Olga Wiechec Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
  • Martyna Krzykawska-Serda
  • Martyna Elas Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
  • Teodora Krol Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
  • Krystyna Urbanska Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
  • Andrzej Slominski Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA VA Medical Center, Birmingham, AL, USA
Keywords: Calcitriol, Syrian golden hamster, hepatologic toxicity, nephrologic toxicity


Although vitamin D is included in the group of fat-soluble vitamins, it must be considered as a prohormone. Its active forms including calcitriol have pleiotropic effects and play an important role in the regulation of cell proliferation, differentiation and apoptosis as well as in hormone secretion, and they show anti-cancer properties. Since calcitriol delivery can be beneficial for the organism, and Syrian golden hamsters represent a unique experimental model, we decided to investigate its toxicity in this species. In this study, we injected calcitriol intraperitoneally at doses 0 (control), 0.180±0.009 µg/kg and 0.717± 0.032 µg/kg. Animal behavior was observed for 72 hrs after injection, and afterwards blood and liver and kidney were collected for post-mortem examination, electron microscopy, and hematology analyses. The highest dose of calcitriol induced a change in animal behavior from calm to aggressive, and liver surface showed morphological signs of damage. Following the injection of calcitriol, ultrastructural changes were also observed in the liver and kidneys, e.g. vacuolization and increased number of mitochondria. There was also a trend for increased serum levels of aspartate aminotransferase (AST), but not of alanine aminotransferase (ALT) or GGTP (gamma-glutamyl transpeptidase). There was no change in Ca, Mg and P levels as well as in blood morphology between experimental and control groups. These results indicate that calcitriol at 0.717, but not at 0.18 µg/kg, may induce acute damage of the liver and kidneys, without inducing calcemia. We propose that the hepatotoxic effect of calcitriol in hamster constitutes the primary cause of behavioral changes.


Alshahrani, F. and Aljohani, N. (2013) ‘Vitamin D: Deficiency, sufficiency and toxicity’, Nutrients, 5(9), pp. 3605–3616. doi: 10.3390/nu5093605.

Battault, S., Whiting, S. J., Peltier, S. L., Sadrin, S., Gerber, G. and Maixent, J. M. (2013) ‘Vitamin D metabolism, functions and needs: From science to health claims’, European Journal of Nutrition, 52(2), pp. 429–441. doi: 10.1007/s00394-012-0430-5.

Bikle, D. D. (2011) ‘Vitamin D: an ancient hormone.’, Experimental dermatology, 20(1), pp. 7–13.

Bikle, D. D. (2014) ‘Vitamin D Metabolism, Mechanism of Action, and Clinical Applications’, Chemistry & Biology, 21(3), pp. 319–329. doi: 10.1016/j.chembiol.2013.12.016.

Bikle, D. D., Elalieh, H., Welsh, J., Oh, D., Cleaver, J. and Teichert, A. (2013) ‘Protective role of vitamin D signaling in skin cancer formation’, The Journal of Steroid Biochemistry and Molecular Biology, 136(9), pp. 271–279. doi: 10.1016/j.jsbmb.2012.09.021.

Burns, E. M., Elmets, C. A. and Yusuf, N. (2015) ‘Vitamin D and skin cancer.’, Photochemistry and photobiology, 91(1), pp. 201–9. doi: 10.1111/php.12382.

Chakraborty, S., Sarkar, A. K., Bhattacharya, C., Krishnan, P. and Chakraborty, S. (2015) ‘A nontoxic case of vitamin D toxicity’, Lab Med, 46(2), pp. 146–149. doi: 10.1309/LM5URN1QIR7QBLXK.

Cheng, C. Y. S., Slominski, A. T. and Tuckey, R. C. (2014) ‘Metabolism of 20-hydroxyvitamin D3 by mouse liver microsomes’, The Journal of Steroid Biochemistry and Molecular Biology, 144(9), pp. 286–293. doi: 10.1016/j.jsbmb.2014.08.009.

Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L. and Carmeliet, G. (2016) ‘Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects’, Physiological Reviews, 96(1), pp. 365–408. doi: 10.1152/physrev.00014.2015.

Corbee, R. J., Vaandrager, A. B., Kik, M. J., Molenaar, M. R. and Hazewinkel, H. A. W. (2008) ‘Cutaneous vitamin D synthesis in carnivorous species’, European Society of Veterinary and Comparative Nutrition, 96(1), p. 1.

DiSilvestro, R. A. (2005) Handbook of minerals as nutritional supplements. CRC Press. doi: 10.1080/10715760500510437.

Gorris, M. A., Arora, H., Lieb, D. C. and Aloi, J. A. (2016) ‘A Word of Caution When Prescribing High Dose Vitamin D’, The American Journal of Medicine. Elsevier Inc., 130(4), pp. e129–e130. doi: 10.1016/j.amjmed.2016.10.025.

Gowda, S., Desai, P. B., Hull, V. V, Math, A. a K., Vernekar, S. N. and Kulkarni, S. S. (2009) ‘A review on laboratory liver function tests.’, The Pan African medical journal, 3(November), p. 17. doi: 10.11604/pamj.2009.3.17.125.

Gröber, U., Schmidt, J. and Kisters, K. (2015) ‘Magnesium in prevention and therapy’, Nutrients, 7(9), pp. 8199–8226. doi: 10.3390/nu7095388.

Gupta, A. K., Jamwal, V., Sakul and Malhotra, P. (2014) ‘Hypervitaminosis D and systemic manifestations: A comprehensive review’, Journal International Medical Sciences Academy, 27(4), pp. 236–237.

Henry, H. L. (2011) ‘Regulation of vitamin D metabolism’, Best Practice & Research Clinical Endocrinology & Metabolism. Elsevier Ltd, 25(4), pp. 531–541. doi: 10.1016/j.beem.2011.05.003.

Holick, M. F. (2003) ‘Vitamin D: A millenium perspective’, Journal of Cellular Biochemistry, 88(2), pp. 296–307. doi: 10.1002/jcb.10338.

Holick, M. F. (2007) ‘Vitamin D Deficiency’, New England Journal of Medicine, 357(3), pp. 266–281. doi: 10.1056/NEJMra070553.

Holick, M. F. (2009) ‘Vitamin D Status: Measurement, Interpretation, and Clinical Application’, Annals of Epidemiology, 19(2), pp. 73–78. doi: 10.1016/j.annepidem.2007.12.001.

Holick, M. F., Chen, T. C., Lu, Z. and Sauter, E. (2007) ‘Vitamin D and skin physiology: A D-lightful story’, Journal of Bone and Mineral Research, 22(SUPPL. 2), pp. 28–33. doi: 10.1359/jbmr.07s211.

Koul, P. A., Ahmad, S. H., Ahmad, F., Jan, R. A., Shah, S. U. and Khan, U. H. (2011) ‘Vitamin D toxicity in adults: A case series from an area with endemic Hypovitaminosis D’, Oman Medical Journal, 26(3), pp. 201–204. doi: 10. 5001/omj.2011.49.

Krawczyński, J. and Osiński, T. (1967) Laboratoryjne metody diagnostyczne. Warszawa: PZWL.

Lehmann, B. and Meurer, M. (2010) ‘Vitamin D metabolism’, Dermatologic Therapy, 23(1), pp. 2–12. doi: 10.1111/j.1529-8019.2009.01286.x.

Lips, P. (2006) ‘Vitamin D physiology’, Progress in Biophysics and Molecular Biology, 92(1), pp. 4–8. doi: 10.1016/j.pbiomolbio.2006.02.016.

Marcinowska-Suchowierska, E., Płudowski, P., Witaminą, Z. and Tałałaj, M. (2016) ‘Vitamin D toxicity’, Post N Med, XXIX(10), pp. 756–759.

Marins, T. A., Galvão, T. de F. G., Korkes, F., Malerbi, D. A. C., Ganc, A. J., Korn, D., Wagner, J., Guerra, J. C. de C., Borges Filho, W. M., Ferracini, F. T. and Korkes, H. (2014) ‘Vitamin D intoxication: case report’, Einstein (São Paulo), 12(2), pp. 242–244. doi: 10.1590/S1679-45082014RC2860.

Marzella, L. and Glaumann, H. (1980) ‘Increased degradation in rat liver induced by vinblastine. II. Morphologic characterization.’, Laboratory investigation; a journal of technical methods and pathology, 42(1), pp. 18–27.

Mawri, S., Gildeh, E., Joseph, N., Rabbani, B. and Zweig, B. (2017) ‘Cardiac Dysrhythmias and Neurological Dysregulation: Manifestations of Profound Hypomagnesemia’, Case Reports in Cardiology. Hindawi, 2017, pp. 1–5. doi: 10.1155/2017/6250312.

Mazahery, H. and von Hurst, P. R. (2015) ‘Factors affecting 25-hydroxyvitamin D concentration in response to vitamin D supplementation’, Nutrients, 7(7), pp. 5111–5142. doi: 10.3390/nu7075111.

McCullough, M. L., Weinstein, S. J., Freedman, D. M., Helzlsouer, K., Flanders, W. D., Koenig, K., Kolonel, L., Laden, F., Le Marchand, L., Purdue, M., Snyder, K., Stevens, V. L., Stolzenberg-Solomon, R., Virtamo, J., Yang, G., Yu, K., Zheng, W., Albanes, D., Ashby, J., Bertrand, K., Cai, H., Chen, Y., Gallicchio, L., Giovannucci, E., Jacobs, E. J., Hankinson, S. E., Hartge, P., Hartmuller, V., Harvey, C., Hayes, R. B., Horst, R. L. and Shu, X. O. (2010) ‘Correlates of circulating 25-hydroxyvitamin D: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers’, American Journal of Epidemiology, 172(1), pp. 21–35. doi: 10.1093/aje/kwq113.

McPherson, C. W. and Van Hoosier, G. L. (1987) Laboratory hamsters. Edited by C. W. McPherson and G. L. Van Hoosier. Orlando: Academic Press.

Piotrowska, A., Wierzbicka, J., Ślebioda, T., Woźniak, M., Tuckey, R. C., Slominski, A. T. and Żmijewski, M. A. (2016) ‘Vitamin D derivatives enhance cytotoxic effects of H 2 O 2 or cisplatin on human keratinocytes’, Steroids, 110(2), pp. 49–61. doi: 10.1016/j.steroids.2016.04.002.

Piotrowska, A., Wierzbicka, J. and Zmijewski, M. A. (2016) ‘Vitamin D in the skin physiology and pathology’, Acta Biochimica Polonica, 63(1), pp. 17–29. doi: 10.18388/abp.2015_1104.

Reddy, P. and Edwards, L. R. (2017) ‘Magnesium Supplementation in Vitamin D Deficiency.’, American journal of therapeutics. doi: 10.1097/MJT.0000000000000538.

Reichrath, J., Lehmann, B., Carlberg, C., Varani, J. and Zouboulis, C. C. (2007) ‘Vitamins as hormones’, Hormone and Metabolic Research, 39(2), pp. 71–84. doi: 10.1055/s-2007-958715.

Rejnmark, L., Bislev, L. S., Cashman, K. D., Eiríksdottir, G., Gaksch, M., Grübler, M., Grimnes, G., Gudnason, V., Lips, P., Pilz, S., Van Schoor, N. M., Kiely, M. and Jorde, R. (2017) Non-skeletal health effects of Vitamin D supplementation: A systematic review on findings from meta-Analyses summarizing trial data, PLoS ONE. doi: 10.1371/journal.pone.0180512.

Samuel, S. and Sitrin, M. D. (2008) ‘Vitamin D’s role in cell proliferation and differentiation’, Nutrition Reviews, 66(SUPPL.2), pp. S116–S124. doi: 10.1111/j.1753-4887.2008.00094.x.

Schwalfenberg, G. (2007) ‘Not enough vitamin D: health consequences for Canadians.’, Canadian family physician Medecin de famille canadien, 53(5), pp. 841–54.

Slominski, A., Semak, I., Zjawiony, J., Wortsman, J., Li, W., Szczesniewski, A. and Tuckey, R. C. (2005) ‘The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism’, FEBS Journal, 272(16), pp. 4080–4090. doi: 10.1111/j.1742-4658.2005.04819.x.

Slominski, A. T., Brozyna, A., Jozwicki, W. and Tuckey, R. C. (2015a) ‘Vitamin D as an adjuvant in melanoma therapy’, Melanoma Management, 2(1), pp. 1–4. doi: 10.2217/mmt.14.36.

Slominski, A. T., Brożyna, A. A., Skobowiat, C., Zmijewski, M. A., Kim, T.-K., Janjetovic, Z., Oak, A. S., Jozwicki, W., Jetten, A. M., Mason, R. S., Elmets, C., Li, W., Hoffman, R. M. and Tuckey, R. C. (2018) ‘On the role of classical and novel forms of vitamin D in melanoma progression and management’, The Journal of Steroid Biochemistry and Molecular Biology, 177, pp. 159–170. doi: 10.1016/j.jsbmb.2017.06.013.

Slominski, A. T., Brożyna, A. A., Zmijewski, M. A., Jóźwicki, W., Jetten, A. M., Mason, R. S., Tuckey, R. C. and Elmets, C. A. (2017a) ‘Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management’, Laboratory Investigation, 97(6), pp. 706–724. doi: 10.1038/labinvest.2017.3.

Slominski, A. T., Janjetovic, Z., Fuller, B. E., Zmijewski, M. A., Tuckey, R. C., Nguyen, M. N., Sweatman, T., Li, W., Zjawiony, J., Miller, D., Chen, T. C., Lozanski, G. and Holick, M. F. (2010) ‘Products of Vitamin D3 or 7-Dehydrocholesterol Metabolism by Cytochrome P450scc Show Anti-Leukemia Effects, Having Low or Absent Calcemic Activity’, PLoS ONE. Edited by J. Schauber, 5(3), p. e9907. doi: 10.1371/journal.pone.0009907.

Slominski, A. T., Kim, T.-K., Hobrath, J. V., Oak, A. S. W., Tang, E. K. Y., Tieu, E. W., Li, W., Tuckey, R. C. and Jetten, A. M. (2017b) ‘Endogenously produced nonclassical vitamin D hydroxy-metabolites act as “biased” agonists on VDR and inverse agonists on RORα and RORγ’, The Journal of Steroid Biochemistry and Molecular Biology. Elsevier Ltd, 173, pp. 42–56. doi: 10.1016/j.jsbmb.2016.09.024.

Slominski, A. T., Kim, T.-K., Janjetovic, Z., Tuckey, R. C., Bieniek, R., Yue, J., Li, W., Chen, J., Nguyen, M. N., Tang, E. K. Y., Miller, D., Chen, T. C. and Holick, M. (2011) ‘20-Hydroxyvitamin D 2 is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells’, American Journal of Physiology-Cell Physiology, 300(3), pp. C526–C541. doi: 10.1152/ajpcell.00203.2010.

Slominski, A. T., Kim, T.-K., Li, W., Postlethwaite, A., Tieu, E. W., Tang, E. K. Y. and Tuckey, R. C. (2015b) ‘Detection of novel CYP11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland’, Scientific Reports. Nature Publishing Group, 5(1), p. 14875. doi: 10.1038/srep14875.

Slominski, A. T., Kim, T.-K., Shehabi, H. Z., Semak, I., Tang, E. K. Y., Nguyen, M. N., Benson, H. A. E., Korik, E., Janjetovic, Z., Chen, J., Yates, C. R., Postlethwaite, A., Li, W. and Tuckey, R. C. (2012) ‘In vivo evidence for a novel pathway of vitamin D 3 metabolism initiated by P450scc and modified by CYP27B1’, The FASEB Journal, 26(9), pp. 3901–3915. doi: 10.1096/fj.12-208975.

Slominski, A. T., Kim, T.-K., Takeda, Y., Janjetovic, Z., Broz˙yna, A. A., Skobowiat, C., Wang, J., Postlethwaite, A., Li, W., Tuckey, R. C. and Jetten, A. M. (2014) ‘RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D’, The FASEB Journal, 28(7), pp. 2775–2789. doi: 10.1096/fj.13-242040.

Slominski, A. T., Li, W., Kim, T.-K. K., Semak, I., Wang, J., Zjawiony, J. K. and Tuckey, R. C. (2015c) ‘Novel activities of CYP11A1 and their potential physiological significance’, The Journal of Steroid Biochemistry and Molecular Biology. Elsevier Ltd, 151, pp. 25–37. doi: 10.1016/j.jsbmb.2014.11.010.

Slominski, A. T., Zmijewski, M. A., Semak, I., Zbytek, B., Pisarchik, A., Li, W., Zjawiony, J. and Tuckey, R. C. (2014) ‘Cytochromes p450 and skin cancer: role of local endocrine pathways.’, Anti-cancer agents in medicinal chemistry, 14(1), pp. 77–96. doi: 10.1016/j.immuni.2010.12.017.Two-stage.

Sowah, D., Fan, X., Dennett, L., Hagtvedt, R. and Straube, S. (2017) ‘Vitamin D levels and deficiency with different occupations: a systematic review’, BMC Public Health. BMC Public Health, 17(1), p. 519. doi: 10.1186/s12889-017-4436-z.

Suckow, M., Stevens, K. and Wilson, R. (2012) The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. 1st edn, American College of Laboratory Animal Medicine. 1st edn. Edited by M. Suckow, K. Stevens, and R. Wilson. American College of Laboratory Animal Medicine. doi:

Thacher, T. D. and Clarke, B. L. (2011) ‘Vitamin D insufficiency’, Mayo Clinic Proceedings. Mayo Foundation for Medical Education and Research, 86(1), pp. 50–60. doi: 10.4065/mcp.2010.0567.

Venkatram, S., Chilimuri, S., Adrish, M., Salako, A., Patel, M. and Diaz-Fuentes, G. (2011) ‘Vitamin D deficiency is associated with mortality in the medical intensive care unit.’, Critical care (London, England), 15(6), p. R292. doi: 10.1186/cc10585.

Virmani, A. (2014) ‘Vitamin D toxicity’, Indian Pediatrics, 51(1), p. 63. doi: 10.1007/s13312-014-0315-1.

Wacker, M. and Holick, M. F. (2013) ‘Sunlight and Vitamin D’, Dermato-Endocrinology, 5(1), pp. 51–108. doi: 10.4161/derm.24494.

Wang, J., Slominski, A., Tuckey, R. C., Janjetovic, Z., Kulkarni, A., Chen, J., Postlethwaite, A. E., Miller, D. and Li, W. (2012) ‘20-hydroxyvitamin D₃ inhibits proliferation of cancer cells with high efficacy while being non-toxic.’, Anticancer research, 32(3), pp. 739–46.

Weiss, D. and Wardrop, J. (2010) Schalm’s Veterinary Hematology. 6 Edition. Edited by J. Wardrop and D. Weiss. Wiley-Blackwell.

Wierzbicka, J., Piotrowska, A. and Zmijewski, M. A. (2014) ‘The renaissance of vitamin D’, Acta Biochimica Polonica, 61(4), pp. 679–686.

Yeh, M. W., Ituarte, P. H. G., Zhou, H. C., Nishimoto, S., Amy Liu, I.-L., Harari, A., Haigh, P. I. and Adams, A. L. (2013) ‘Incidence and Prevalence of Primary Hyperparathyroidism in a Racially Mixed Population’, The Journal of Clinical Endocrinology & Metabolism, 98(3), pp. 1122–1129. doi: 10.1210/jc.2012-4022.