First insight into microbial community composition in a phosphogypsum waste heap soil

  • Sylwia Zielińska Department of Bacterial Molecular Genetics
  • Piotr Radkowski
  • Tadeusz Ossowski
  • Agnieszka Ludwig-Gałęzowska
  • Joanna M Łoś
  • Marcin Łoś
Keywords: microbial community, 16S rRNA gene, soil sample, postproduction waste, phosphogypsum, reclamation


The aim of this study was to investigate the soil microbial communities of a phosphogypsum waste heap. The soil microbial community structures can differ over time, as they are affected by the changing environmental conditions caused by a long-term exposure to different kinds of pollutions, as is the case of soil in the post-production waste area in Wiślinka (in the northern part of Poland) currently undergoing restoration. Our analyses indicated that the most abundant phyla were Proteobacteria, Acidobacteria, Actinobacteria and generally such an abundance is common for most of the studied soils. The most dominant class were Alphaproteobacteria, with their participation in 33.46% of the total reads. Among this class, the most numbered order was Sphingomonadales, whereas among this order the Sphingomonadaceae family was the most abundant one. The Sphingomonadaceae family is currently in the center of interest of many researchers, due to the ability of some of its members to utilize a wide range of naturally occurring organic compounds and many types of environmental contaminants. This kind of knowledge about microbial populations, can support efforts in bioremediation and can improve monitoring changes in the contaminated environments.


Aronesty E. Command-line tools for processing biological sequencing data, ea-utils. 2011;

Azarbad H, Niklińska M, Laskowski R, van Straalen NM, van Gestel CAM, Zhou J, et al. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiology Ecology. 2015;91(1):1–11.

Balkwill DL, Fredrickson JK, Romine MF. Sphingomonas and Related Genera. The Prokaryotes, A Handbook of the Biology of Bacteria. Volume 7: Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria. Martin Dworkin (Editor-in-Chief),. SingaporE: Springer; 2006.

Berg J, Brandt KK, Al-Soud WA, Holm PE, Hansen LH, Sørensen SJ, et al. Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term cu exposure. Applied and Environmental Microbiology. 2012;78(20):7438–46.

Boryłko A, Skwarzec B. Biogeochemistry of uranium in the southern Baltic ecosystem. Journal of Ecology and Protection of the Coastline. 2013;(92):53–69.

Boryło A, Skwarzec B. Activity disequilibrium between 234U and 238U isotopes in natural environment. Journal of Radioanalytical and Nuclear Chemistry. 2014;300(2):719–27.

Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environmental Microbiology. 2010;12(7):1842–54.

Caporaso JG, Bittinger K, Bushman F, DeSantis T, Andersen G, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26(2):266–7.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. 2011;7(5):335–6.

Ceja-Navarro JA, Rivera-Orduña FN, Patiño-Zúñiga L, Vila-Sanjurjo A, Crossa J, Govaerts B, et al. Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Applied and Environmental Microbiology. 2010;76(11):3685–91.

Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology. 2010;12(11):2998–3006.

Daniel R. The metagenomics of soil. Nature reviews. Microbiology. 2005;3(6):470–8.

Dell’Amico E, Mazzocchi M, Cavalca L, Allievi L, Andreoni V. Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil. Microbiological Research. 2008;163(6):671–83.

DeSantis T, Hugenholtz, P, Larsen N, Rojas M, Brodie E, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72.

Edgar R. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1.

Ellis R, Morgan P, Weightman A, Fry JAEM (2003) 69(6): 3223-3230. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol. (2003) 69(6): 3223-3230. 2003;69(6):3223–30.

Felczykowska A, Krajewska A, Zielińska S, Łos JM. Sampling, metadata and DNA extraction - Important steps in metagenomic studies. Acta Biochimica Polonica. 2015;62(1):151–60.

Ferrera-Rodríguez O, Greer CW, Juck D, Consaul LL, Martínez-Romero E, Whyte LG. Hydrocarbon-degrading potential of microbial communities from Arctic plants. Journal of Applied Microbiology. 2013;114(1):71–83.

Gołębiewski M, Deja-Sikora E, Cichosz M, Tretyn A, Wróbel B. 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microbial ecology [Internet]. 2014;67(3):635–47. Available from:

Gray CM, Helmig D, Fierer N. Bacteria and fungi associated with isoprene consumption in soil. Elementa: Science of the Anthropocene. 2015;3:53.

Guan X, Wang J, Zhao H, Wang J, Luo X, Liu F, et al. Soil bacterial communities shaped by geochemical factors and land use in a less-explored area, Tibetan Plateau. BMC genomics [Internet]. 2013;14(1):820. Available from:

Handelsman J, et al. (Committee on Metagenomics: Challenges and Functional Applications NRC. The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. Washington, DC: The National Academies Press; 2007.

Hupka J. Ekspertyza określająca stopień spełnienia standardów jakości środowiska w rejonie składowania fosfogipsów w Wiślince. Gdańsk; 2006.

Janssen P. Identyfying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes. Appl Environ Microb. 2006;1719–28.

Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M. Improved Culturability of Soil Bacteria and Isolation in Pure Culture of Novel Members of the Divisions Acidobacteria , Actinobacteria ,. 2002;68(5):2391–6.

Kim HM, Jung JY, Yergeau E, Hwang CY, Hinzman L, Nam S, et al. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska. FEMS Microbiology Ecology. 2014;89(2):465–75.

Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research. 2013;41(1):1–11.

Kravchenko IK, Kizilova a. K, Bykova S a., Men’ko E V., Gal’chenko VF. Molecular analysis of high-affinity methane-oxidizing enrichment cultures isolated from a forest biocenosis and agrocenoses. Microbiology. 2010;79(1):106–14.

Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microb. 2005;71:8228–35.

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal. 2011;17(1):10–2.

McDonald D, Clemente J, Kuczynski J, Rideout J, Stombaugh J, Wendel D, et al. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience. 2012;1(1 7).

Myślińska E. Laboratoryjne badania gruntów. PWN, editor. Warszawa; 1998.

Neufeld JD, Mohn WW. Unexpectedly High Bacterial Diversity in Arctic Tundra Relative to Boreal Forest Soils , Revealed by Serial Analysis of Ribosomal Sequence Tags Unexpectedly High Bacterial Diversity in Arctic Tundra Relative to Boreal Forest Soils , Revealed by Serial Ana. Applied and Environmental Microbiology. 2005;71(10):5710–8.

Ramirez KS, Lauber CL, Knight R, Bradford M a, Fierer N. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology [Internet]. 2010;91(12):3414–63. Available from:

Reith F, Brugger J, Zammit CM, Gregg AL, Goldfarb KC, Andersen GL, et al. Influence of geogenic factors on microbial communities in metallogenic Australian soils. The ISME Journal [Internet]. Nature Publishing Group; 2012;6(11):2107–18. Available from:

S. A. FastQC a Quality Control Tool for High Throughput Sequence Data. [Internet]. 2010; Available from:

Skwarzec B, Borylo A, Kosinska A, Radzajewska S. Polonium (Po-210) and uranium (U-234, U-238) in water, phosphogypsum and their bioaccumulation in plants around phosphogypsum waste heap at Wislinka (northern Poland). Nukleonika. 2010;55(2):187–93.

Stefanowicz AM, Niklińska M, Laskowski R. Pollution-induced tolerance of soil bacterial communities in meadow and forest ecosystems polluted with heavy metals. European Journal of Soil Biology. 2009;45(4):363–9.

Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience. 2013;26(2(1)):2–16.

Xu Z, Hansen MA, Hansen LH, Jacquiod S, Sørensen SJ. Bioinformatic approaches reveal metagenomic characterization of soil microbial community. PLoS ONE. 2014;9(4).

Zielińska S, Radkowski P, Blendowska A, Ludwig-Gałęzowska A, Łoś JM, Łoś M. The choice of the DNA extraction method may influence the outcome of the soil microbial community structure analysis. MicrobiologyOpen. 2017;e00453.

Zwolicki A, Barcikowski M, Barcikowski A, Cymerski M, Stempniewicz L, Convey P. Seabird colony effects on soil properties and vegetation zonation patterns on King George Island, Maritime Antarctic. Polar Biology. Springer Berlin Heidelberg; 2015;38(10):1645–55.