Synergistic hemolysins of coagulase-negative staphylococci (CoNS).

  • Małgorzata Różalska Department of Pharmaceutical Microbiology, Medical University of Lodz, Łódź, Poland.;
  • Anna Derczyńska Department of Pharmaceutical Microbiology, Medical University of Lodz, Łódź, Poland.;
  • Agnieszka Maszewska Department of Immunobiology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland.;


A total of 104 coagulase negative staphylococci, belonging to S. capitis, S. hominis, S. haemolyticus and S. warneri, originating from the collection of the Department of Pharmaceutical Microbiology (ZMF), Medical University of Lodz, Poland, were tested for their synergistic hemolytic activity. 83% of strains produced δ-hemolysin, however, the percentage of positive strains of S. haemolyticus, S. warneri, S. capitis and S. hominis was different - 98%, 78%, 75% and 68%, respectively. Highly pure hemolysins were obtained from culture supernatants by protein precipitation with ammonium sulphate (0-70% of saturation) and extraction by using a mixture of organic solvents. The purity and molecular mass of hemolysins was determined by TRIS/Tricine PAGE. All CoNS hemolysins were small peptides with a molar mass of about 3.5 kDa; they possessed cytotoxic activity against the line of human foreskin fibroblasts ATCC Hs27 and lysed red cells from different mammalian species, however, the highest activity was observed when guinea pig, dog and human red blood cells were used. The cytotoxic effect on fibroblasts occurred within 30 minutes. The S. cohnii ssp. urealyticus strain was used as a control. The antimicrobial activity was examined using hemolysins of S. capitis, S. hominis, S. cohnii ssp. cohnii and S. cohnii ssp. urealyticus. Hemolysins of the two S. cohnii subspecies did not demonstrate antimicrobial activity. Cytolysins of S. capitis and S. hominis had a very narrow spectrum of action; out of 37 examined strains, the growth of only Micrococcus luteus, Corynebacterium diphtheriae and Pasteurella multocida was inhibited.