Targeting the hypoxia pathway in malignant plasma cells by using of 17-Allylamino-17-demethoxygeldanamycin

  • Kinga Anna Kocemba-Pilarczyk Katedra Biochemii Lekarskiej UJ-CM
  • Barbara Ostrowska Katedra Biochemii Lekarskiej UJ-CM
  • Sonia Trojan Katedra Biochemii Lekarskiej UJ-CM
  • Ecce Aslan Ecce Aslan was working in the project in frame of The International Federation of Medical Students Associations (IFMSA) exchange program
  • Dorota Kusior Katedra Biochemii Lekarskiej UJ-CM
  • Małgorzata Lasota Katedra Biochemii Lekarskiej UJ-CM
  • Claire Lenouvel Katedra Biochemii Lekarskiej UJ-CM
  • Joanna Dulińska-Litewka Katedra Biochemii Lekarskiej UJ-CM
Keywords: hypoxia, myeloma, 17-AAG


Multiple myeloma (MM) is characterized as a clonal expansion of malignant plasma cells in the bone marrow, what is often associated with pancytopenia and osteolytic bone disease. Interestingly, myeloma-infiltrated bone marrow is considered to be hypoxic, providing the selection pressure for developing tumour. Since HSP90 was shown to participate in stabilization of the subunit of the key transcription factor HIF-1, which controls the hypoxic response, the aim of this study was to investigate the influence of a HSP90 inhibitor 17-Allylamino-17-demethoxygeldanamycin (17-AAG), on MM cells cultured in low oxygenation conditions. We confirmed that 17-AAG inhibits hypoxic induction of HIF-1 target genes in malignant plasma cells and demonstrate the concentration range of severe hypoxia-specific cytotoxicity. Next, we selected the malignant plasma cells in severe hypoxia/re-oxygenation culture conditions in the presence or absence of 17-AAG and next, cells which survived were further expanded and analyzed. Interestingly, we have noticed significant changes in the survival and the response to anti-MM drugs between the parental cell lines and those selected in cyclic severe hypoxia in the presence and absence of 17-AAG. Importantly, we also observed that the lack of oxygen itself, irrespectively of HIF-1 inhibition, is the main/pivotal factor driving the selection process in the presented experiments.


Asosingh K, De Raeve H, de Ridder M, Storme GA, Willems A, Van Riet I, Van Camp B, Vanderkerken K (2005) Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. Haematologica 90: 810-817.

Azab AK, Hu J, Quang P, Azab F, Pitsillides C, Awwad R, Thompson B, Maiso P, Sun JD, Hart CP, Roccaro AM, Sacco A, Ngo HT, Lin CP, Kung AL, Carrasco RD, Vanderkerken K, Ghobrial IM (2012) Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood 119: 5782-5794. doi: 10.1182/blood-2011-09-380410

Bianchi G; Ghobrial IM (2014) Biological and Clinical Implications of Clonal Heterogeneity and Clonal Evolution in Multiple Myeloma. Curr Cancer Ther Rev 10: 70-79. doi: 10.2174/157339471002141124121404

Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, Dawson KJ, Iorio F, Nik-Zainal S, Bignell GR, et al. (2014) Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 5: 2997. doi: 10.1038/ncomms3997

Borsi E, Perrone G, Terragna C, Martello M, Dico AF, Solaini G, Baracca A, Sgarbi G, Pasquinelli G et al. (2014) Hypoxia inducible factor-1 alpha as a therapeutic target in multiple myeloma. Oncotarget 5: 1779-1792. doi: 10.18632/oncotarget.1736

Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15: 1239-1253. doi: 10.1111/j.1582-4934.2011.01258.x.

Colla S, Storti P, Donofrio G, Todoerti K, Bolzoni M, Lazzaretti M, Abeltino M, Ippolito L, Neri A, Ribatti D, Rizzoli V, Martella E, Giuliani N (2010) Low bone marrow oxygen tension and hypoxia-inducible factor-1alpha overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138(+) cells. Leukemia 24: 1967-1970. doi: 10.1038/leu.2010.193

Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15: 232-239. doi: 10.1016/j.ccr.2009.01.021

Giatromanolaki A, Bai M, Margaritis D, Bourantas KL, Koukourakis MI, Sivridis E, Gatter KC (2010) Hypoxia and activated VEGF/receptor pathway in multiple myeloma. Anticancer Res 30: 2831-2836.

Giuliani N, Storti P, Bolzoni M, Palma BD, Bonomini S (2011) Angiogenesis and multiple myeloma. Cancer Microenviron 4: 325-37. doi: 10.1007/s12307-011-0072-9

Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379: 88-91.

Hammond EM, Asselin MC, Forster D, O'Connor JP, Senra JM, Williams KJ (2014) The meaning, measurement and modification of hypoxia in the laboratory and the clinic. Clin Oncol (R Coll Radiol) 26: 277-288. doi: 10.1016/j.clon.2014.02.002

Harris AL (2002) Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer 2: 38-47. doi: 10.1038/nrc704

Harrison JS, Rameshwar P, Chang V, Bandari P. (2002) Oxygen saturation in the bone marrow of healthy volunteers. Blood 99: 394.

Hu J, Van Valckenborgh E, Menu E, De Bruyne E, Vanderkerken K (2012) Understanding the hypoxic niche of multiple myeloma: therapeutic implications and contributions of mouse models. Dis Model Mech 5: 763-771. doi: 10.1242/dmm.008961

Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM (2002) Hsp90 Regulates a von Hippel Lindau-independent Hypoxia-inducible Factor-1_-degradative Pathway. J. Biol. Chem 277: 29936-29944. doi 10.1074/jbc.M204733200

Jurczyszyn A, Zebzda A, Czepiel J, Perucki W, Bazan-Socha S, Cibor D, Owczarek D, Majka M (2014) Geldanamycin and Its Derivatives Inhibit the Growth of Myeloma Cells and Reduce the Expression of the MET Receptor. J Cancer 5: 480-490. doi: 10.7150/jca.8731

Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E, Van Wier S, Blackburn PR, Baker AS, Dispenzieri A (2012) Clonal competition with alternating dominance in multiple myeloma. Blood 120: 1067-1076. doi: 10.1182/blood-2012-01-405985

Keith B; Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129: 465-472. doi: 10.1016/j.cell.2007.04.019

Kellner J, Liu B, Kang Y, Li (2013) Fact or fiction-identifying the elusive multiple myeloma stem cell. J Hematol Oncol 6: 91. doi: 10.1186/1756-8722-6-91

Kocemba KA, van Andel H, de Haan-Kramer A, Mahtouk K, Versteeg R, Kersten MJ, Spaargaren M, Pals ST. (2013) The hypoxia target adrenomedullin is aberrantly expressed in multiple myeloma and promotes angiogenesis. Leukemia 27: 1729-1737. doi: 10.1038/leu.2013.76

Koh MY, and Powis G (2012) Passing the baton: the HIF switch. Trends Biochem Sci 37: 364-372.

Lévesque JP, Winkler IG. (2011) Hierarchy of immature hematopoietic cells related to blood flow and niche. Curr Opin Hematol 18: 220-225. doi: 10.1097/MOH.0b013e3283475fe7

Lévesque JP, Winkler IG, Hendy J, Williams B, Helwani F, Barbier V, Nowlan B, Nilsson SK (2007) Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells 25: 1954-1965. doi: 10.1634/stemcells.2006-0688

Li Z, Rich JN (2010) Hypoxia and hypoxia inducible factors in cancer stem cell maintenance. Curr Top Microbiol Immunol 345: 21-30. doi: 10.1007/82_2010_75

Loges S, Mazzone M, Hohensinner P, Carmeliet P. (2009) Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15: 167-170. doi: 10.1016/j.ccr.2009.02.007

Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G et al. (2014) Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25: 91-101. doi: 10.1016/j.ccr.2013

Lu L, Payvandi F, Wu L, Zhang LH, Hariri RJ, Man HW, Chen RS, Muller GW, Hughes CC, Stirling DI, et al. (2009) The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res 77: 78-86. doi: 10.1016/j.mvr.2008.08.003

Martin SK, Diamond P, Williams SA, To LB, Peet DJ, Fujii N, Gronthos S, Harris AL, Zannettino AC (2010) Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica 95: 776-784. doi: 10.3324/haematol.2009.015628

McIntyre A, Harris AL (2015) Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. EMBO Mol Med 7: 368-379. doi: 10.15252/emmm.201404271

Melchor L, Brioli A, Wardell CP, Murison A, Potter NE, Kaiser MF, Fryer RA, Johnson DC, Begum DB, Hulkki Wilson S et al. (2014) Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia 28: 1705-1715. doi: 10.1038/leu.2014.13

Minchenko O, Opentanova I, Minchenko D, Ogura T, Esumi H (2004) Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 gene via hypoxia-inducible factor-1alpha activation. FEBS Lett 576: 14-20. doi: 10.1016/j.febslet.2004.08.053

Mitra AK, Mukherjee UK, Harding T, Jang JS, Stessman H, Li Y, Abyzov A, Jen J, Kumar S, Rajkumar V, Van Ness B. (2014) Single-Cell Transcriptomics Identifies Intra-Tumor Heterogeneity in Human Myeloma Cell Lines. Blood 124: 3385.

Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE, Morgan G, Akiyama M, Shringarpure R, Munshi NC et al. (2006) Antimyeloma activity of heat shock protein-90 inhibition. Blood 107: 1092-100. doi: 10.1182/blood-2005-03-1158

Muz B, de la Puente P, Azab F, Luderer M, Azab AK (2014) Hypoxia promotes stem cell-like phenotype in multiple myeloma cells. Blood Cancer J 4: 262. doi: 10.1038/bcj.2014.82

Mysore VS, Szablowski J, Dervan PB, Frost PJ (2016) A DNA-binding Molecule Targeting the Adaptive Hypoxic Response in Multiple Myeloma Has Potent Antitumor Activity. Mol Cancer Res 14: 253-266 doi: 10.1158/1541-7786.MCR-15-0361

Newman B, Liu Y, Lee HF, Sun D, Wang Y (2012) HSP90 inhibitor 17-AAG selectively eradicates lymphoma stem cells. Cancer Res 72: 4551-4561. doi: 10.1158/0008-5472.CAN-11-3600

Palumbo A, Gay F, Bringhen S, Falcone A, Pescosta N, Callea V, Caravita T, Morabito F, Magarotto V, Ruggeri M et al. (2008) Bortezomib, doxorubicin and dexamethasone in advanced multiple myeloma. Ann Oncol 19: 1160-5 doi: 10.1093/annonc/mdn018

Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, Inoue M, Bergers G, Hanahan D, Casanovas O. (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15: 220-231. doi: 10.1016/j.ccr.2009.01.027

Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 104: 5431-5436. doi:10.1073/pnas.0701152104

Rohwer N, Cramer T (2011) Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat 14: 191-201. doi: 10.1016/j.drup.2011.03.001

Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8: 62-67.

Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721-732. doi: 10.1038/nrc1187

Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 407: doi: 10.1126/stke.4072007cm8

Shin DH, Chun YS, Lee DS, Huang LE, Park JW. (2008) Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1. Blood 111: 3131-3136. doi:10.1182/blood-2007-11-120576

Turilova VI.; Smirnova TD (2012) Karyotypic variability of human Multiple Myeloma cell lines. Cell and Tissue Biology 6: 442-457. doi: 10.1134/S1990519X12050136

Vasudev NS, Reynolds AR. (2014) Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17: 471-494. doi:10.1007/s10456-014-9420-y

Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9: 10-7. doi: 10.1634/theoncologist.9-90005-10

Weinmann M, Jendrossek V, Güner D, Goecke B, Belka C (2004) Cyclic exposure to hypoxia and reoxygenation selects for tumor cells with defects in mitochondrial apoptotic pathways. Faseb J 18: 1906-1908. doi:10.1096/fj.04-1918fje

Xia Y, Choi HK, Lee K. (2012) Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem 49: 24-40. doi:10.1016/j.ejmech.2012.01.033

Zhang J, Sattler M, Tonon G, Grabher C, Lababidi S, Zimmerhackl A, Raab MS, Vallet S, Zhou Y, Cartron MA (2009) Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1alpha-dependent pathway in multiple myeloma. Cancer Res 69: 5082-5090. doi:10.1158/0008-5472.CAN-08-4603

Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H (2014) HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep 4: 3793. doi:10.1038/srep03793