Flavanols from Japanese quince (Chaenomeles japonica) fruit suppress expression of cyclooxygenase-2, metalloproteinase-9, and nuclear factor-kappaB in human colon cancer cells

  • Katarzyna Owczarek Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
  • Elżbieta Hrabec Department of Medical Enzymology, Faculty of Medicine, Medical University of Lodz , Lodz, Poland
  • Jakub Fichna Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
  • Dorota Sosnowska Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
  • Maria Koziołkiewicz Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
  • Jacek Szymański Central Scientific Laboratory, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
  • Urszula Lewandowska Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland


Natural polyphenols and polyphenol-rich extracts have been found to possess preventive and therapeutic potential against several types of cancers, including colorectal cancer (CRC), which is an example of an inflammation-associated cancer. The study examines the chemopreventive effect of a Japanese quince (Chaenomeles japonica) fruit flavanol preparation (JQFFP) in colon cancer SW-480 cells. JQFFP, rich in procyanidin monomers and oligomers, was found to inhibit SW-480 cell viability by 40% compared to control at 150 µM catechin equivalents (CE) for 72 h incubation, but it was non-toxic to normal colon fibroblast CCD-18Co cells. Furthermore, 100 µM CE JQFFP suppressed COX-2 mRNA expression to 36.7% of control values and protein expression to 77%. In addition, JQFFP reduced MMP-9 protein expression (to 24% vs. control at 100 µM CE) and caused inhibition of its enzymatic activity (to 35% vs. control at 100 µM CE). Not only did JQFFP inhibit COX-2 and MMP-9 levels, but it also reduced NF-κB protein expression (to 65% of control) and phosphorylation of its p65 subunit (to 51%) for 100 µM CE. These results provide the first evidence that JQFFP inhibits COX-2, MMP-9, and  NF-κB expression, which may suggest it has cytotoxic, anti-inflammatory, and anti-metastatic activities towards colon cancer SW-480 cells.


Afrin S, Giampieri F, Gasparrini M, Forbes-Hernandez TY, Varela-López A, Quiles JL, Mezzetti B, Battino M (2016) Chemopreventive and Therapeutic Effects of Edible Berries: A Focus on Colon Cancer Prevention and Treatment. Molecules 21: 169. doi: 10.3390/molecules21020169.

Arber N, Eagle CJ, Spicak J, Rácz I, Dite P, Hajer J, Zavoral M, Lechuga MJ, Gerletti P, Tang J, Rosenstein RB, Macdonald K, Bhadra P, Fowler R, Wittes J, Zauber AG, Solomon SD, Levin B (2006) PreSAP Trial Investigators. Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med 355: 885-895. doi: 10.1056/NEJMoa061652

Carvalho M, Silva BM, Silva R, Valentão P, Andrade PB, Bastos ML (2010) First report on Cydonia oblonga Miller anticancer potential: differential antiproliferative effect against human kidney and colon cancer cells. J Agric Food Chem 58: 3366-3370. doi: 10.1021/jf903836k.

Cerella C, Sobolewski C, Dicato M, Diederich M (2010) Targeting COX-2 expression by natural compounds: a promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochem Pharmacol 80; 1801-1815. doi:10.1016/j.bcp.2010.06.050.

Charalambous MP, Lightfoot T, Speirs V, Horgan K, Gooderham NJ (2009) Expression of COX-2, NF-kappaB-p65, NF-kappaB-p50 and IKKalpha in malignant and adjacent normal human colorectal tissue. Br J Cancer 101: 106-115. doi: 10.1038/sj.bjc.6605120.

Chen WS, Wei SJ, Liu JM, Hsiao M, Kou-Lin J, Yang WK (2001) Tumor invasiveness and liver metastasis of colon cancer cells correlated with cyclooxygenase-2 (COX-2) expression and inhibited by a COX-2-selective inhibitor, etodolac. Int J Cancer 91: 894-899.

doi: 10.1002/1097-0215(200102)9999:9999<894::AID-IJC1146>3.0.CO;2-#

Cho YB, Lee WY, Song SY, Shin HJ, Yun SH, Chun HK. ( 2007) Matrix metalloproteinase-9 activity is associated with poor prognosis in T3-T4 node-negative colorectal cancer. Hum Pathol 38: 1603-1610. doi: 10.1016/j.humpath.2007.03.018

Dias MM, Noratto G, Martino HS, Arbizu S, Peluzio Mdo C, Talcott S, Ramos AM, Mertens-Talcott SU (2014) Pro-apoptotic activities of polyphenolics from açai (Euterpe oleracea Martius) in human SW-480 colon cancer cells. Nutr Cancer 66: 1394-1405. doi: 10.1080/01635581.2014.956252.

Dixon DA, Blanco FF, Bruno A, Patrignani P (2013) Mechanistic Aspects of COX-2 Expression in Colorectal Neoplasia. Recent Results Cancer Res 191: 7-37. doi:10.1007/978-3-642-30331-9_2.

Gorlach S, Wagner W, Podsędek A, Szewczyk K, Koziołkiewicz M, Dastych J (2011) Procyanidins from Japanese quince (Chaenomeles japonica) fruit induce apoptosis in human colon cancer Caco-2 cells in a degree of polymerization-dependent manner. Nutr Cancer 63: 1348-1360. doi: 10.1080/01635581.2011.608480.

Ishizaki T, Katsumata K, Tsuchida A, Wada T, Mori Y, Hisada M, Kawakita H, Aoki T (2006) Etodolac, a selective cyclooxygenase-2 inhibitor, inhibits liver metastasis of colorectal cancer cells via the suppression of MMP-9 activity. Int J Mol Med 17: 357-362. doi: 10.3892/ijmm.17.2.357

Ivanov AI, Parkos CA, Nusrat A (2010) Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 177: 512-524. doi: 10.2353/ajpath.2010.100168.

Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141: 52-67. doi: 10.1016/j.cell.2010.03.015.

Kojima M, Morisaki T, Sasaki N, Nakano K, Mibu R, Tanaka M, Katano M (2004) Increased nuclear factor-κB activation in human colorectal carcinoma and its correlation with tumor progression. Anticancer Res 24, 675-682.

Kucharska AZ (2012) Active compounds of cornelian cherry fruit (Cornus mas L.). Publishing House of University of Wroclaw.

Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1: a001651. doi: 10.1101/cshperspect.a001651.

Lewandowska U, Owczarek K, Szewczyk K, Podsędek A, Koziołkiewicz M, Hrabec E (2014) Influence of polyphenol extract from evening primrose (Oenothera paradoxa) seeds on human prostate and breast cancer cell lines. Postepy Hig Med Dosw 68: 110-118. doi: 10.5604/17322693.1088036.

Lewandowska U, Szewczyk K, Owczarek K, Hrabec Z, Podsędek A, Koziołkiewicz M, Hrabec E (2013a) Flavanols from Japanese quince (Chaenomeles japonica) fruit inhibit human prostate and breast cancer cell line invasiveness and cause favorable changes in bax/bcl-2 mRNA ratio. Nutr Cancer 65: 273-285. doi:10.1080/01635581.2013.749292

Lewandowska U, Szewczyk K, Owczarek K, Hrabec Z, Podsędek A, Sosnowska D, Hrabec E (2013b) Procyanidins from Evening Primrose (Oenothera paradoxa) Defatted Seeds Inhibit Invasiveness of Breast Cancer Cells and Modulate the Expression of Selected Genes Involved in Angiogenesis, Metastasis, and Apoptosis. Nutr Cancer 65: 1219-1231. doi:10.1080/01635581.2013.830314

Li X, Yang YB, Yang Q, Sun LN, Chen WS (2009) Anti-inflammatory and analgesic activities of Chaenomeles speciosa fractions in laboratory animals. J Med Food 12: 1016-1022. doi: 10.1089/jmf.2008.1217.

Mitjavila MT, Moreno JJ (2012) The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem Pharmacol 84: 1113-1122. doi: 10.1016/j.bcp.2012.07.017.

Oszmiański J (1992) Method of preparation of biologically active oligomeric proanthocyanidins from plant raw materials. Polish patent No. P–296521.

Pan MH, Lai CS, Dushenkov S, Ho CT (2009) Modulation of inflammatory genes by natural dietary bioactive compounds. J Agric Food Chem 57: 4467-477. doi: 10.1021/jf900612n.

Park JH, McMillan DC, Horgan PG, Roxburgh CS (2014) The impact of anti-inflammatory agents on the outcome of patients with colorectal cancer. Cancer Treat Rev 40: 68-77. doi: 10.1016/j.ctrv.2013.05.006.

Pfaffl MW, Horgan GW, Dempfle L (2002) Relative Expression Software Tool (REST(c)) for group wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36.

Qian Z, Wu Z, Huang L, Qiu H, Wang L, Li L, Yao L, Kang K, Qu J, Wu Y, Luo J, Liu JJ, Yang Y, Yang W, Gou D (2015) Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Sci Rep 5: 17348. doi: 10.1038/srep17348.

Rodríguez-Ramiro I, Ramos S, López-Oliva E, Agis-Torres A, Bravo L, Goya L, Martín MA (2013) Cocoa polyphenols prevent inflammation in the colon of azoxymethane-treated rats and in TNF-α-stimulated Caco-2 cells. Br J Nutr 110: 206-215. doi: 10.1017/S0007114512004862.

Roelofs HM, Te Morsche RH, van Heumen BW, Nagengast FM, Peters WH (2014) Over-expression of COX-2 mRNA in colorectal cancer. BMC Gastroenterol 14:1. doi: 10.1186/1471-230X-14-1.

Romagnolo DF, Papoutsis AJ, Selmin O (2010) Nutritional targeting of cyclooxygenase-2 for colon cancer prevention. Inflamm Allergy Drug Targets 9: 181-191.

doi: 10.2174/187152810792231922

Rösch D, Bergmann M, Knorr D, Kroh LW (2003) Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice. J Agric Food Chem 51: 4233-4239. doi: 10.1021/jf0300339

Sałaga M, Lewandowska U, Sosnowska D, Zakrzewski PK, Cygankiewicz AI, Piechota-Polańczyk A, Sobczak M, Mosinska P, Chen C, Krajewska WM, Fichna J (2014) Polyphenol extract from evening primrose pomace alleviates experimental colitis after intracolonic and oral administration in mice. Naunyn Schmiedebergs Arch Pharmacol 387: 1069-1078. doi: 10.1007/s00210-014-1025-x.

Shanmugam MK, Kannaiyan R, Sethi G (2011) Targeting cell signaling and apoptotic pathways by dietary agents: role in the prevention and treatment of cancer. Nutr Cancer 63: 161-173. doi: 10.1080/01635581.2011.523502.

Shin Y, Yoon SH, Choe EY, Cho SH, Woo Ch, Rho JY, Kim JH (2007) PMA-induced up-regulation of MMP-9 is regulated by a PKCalpha-NF-kappaB cascade in human lung epithelial cells. Exp Mol Med 39: 97-105. doi: 10.1038/emm.2007.11

Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, Wakabayashi N, Saunders B, Shen Y, Fujimura T, Su LK, Levin B, Godio L, Patterson S, Rodriguez-Bigas MA, Jester SL, King KL, Schumacher M, Abbruzzese J, DuBois RN, Hittelman WN, Zimmerman S, Sherman JW, Kelloff G (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342: 1946-1952. doi: 10.1056/NEJM200006293422603

Strek M, Gorlach S, Podsedek A, Sosnowska D, Koziolkiewicz M, Hrabec Z, Hrabec E (2007) Procyanidin oligomers from Japanese quince (Chaenomeles japonica) fruit inhibit activity of MMP-2 and MMP-9 metalloproteinases. J Agric Food Chem 55: 6447-6452. doi: 10.1021/jf070621c.

Strugała P, Cyboran-Mikołajczyk S, Dudra A, Mizgier P, Kucharska AZ, Olejniczak T, Gabrielska J (2016) Biological Activity of Japanese Quince Extract and Its Interactions with Lipids, Erythrocyte Membrane, and Human Albumin. J Membr Biol 249: 393-410. doi: 10.1007/s00232-016-9877-2.

Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107: 7-11. doi: 10.1172/JCI11830.

Takada Y, Aggarwal BB (2003) Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation: abrogation of cyclooxygenase-2 and matrix metalloprotease-9. J Immunol 171: 3278-3286.

doi: 10.4049/jimmunol.171.6.3278

Tazawa R, Xu XM, Wu KK, Wang LH (1994) Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem Biophys Res Commun 203: 190-199. doi:10.1006/bbrc.1994.2167.

Temraz S, Mukherji D, Shamseddine A (2013) Potential targets for colorectal cancer prevention. Int J Mol Sci 14: 17279-17303. doi: 10.3390/ijms140917279.

Tergaonkar V, Correa RG, Ikawa M, Verma IM (2005) Distinct roles of IkappaB proteins in regulating constitutive NF-kappaB activity. Nat Cell Biol 7: 921-923.

doi: 10.1038/ncb1296

Tsujii M, Kawano S, DuBois RN (1997) Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A 94: 3336-3340.

Viatour P, Merville MP, Bours V, Chariot A (2005) Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30: 43-52. doi: 10.1016/j.tibs.2004.11.009

Wang D, Dubois RN (2010) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29: 781–788. doi: 10.1038/onc.2009.421.

Wang D, Westerheide SD, Hanson JL, Baldwin AS Jr (2000) Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 275: 32592-32597. doi: 10.1074/jbc.M001358200

Yao G, Liu C, Huo H, Liu A, Lv B, Zhang C, Wang H, Li J, Liao L (2013) Ethanol extract of Chaenomeles speciosa Nakai induces apoptosis in cancer cells and suppresses tumor growth in mice. Oncol Lett 6: 256-260. doi: 10.3892/ol.2013.1340.

Zielińska M, Lewandowska U, Podsędek A, Cygankiewicz AI, Jacenik D, Sałaga M, Kordek R, Krajewska WM, Fichna J (2015) Orally available extract from Brassica oleracea var. capitata rubra attenuates experimental colitis in mouse models of inflammatory bowel diseases. J Funct Foods 17: 587–599. doi: 10.1111/jphp.12335