Purinergic signalling in B cells

  • Tomasz Przybyła Department of Molecular Medicine, Medical University of Gdansk, Gdańsk, Poland
  • Monika Sakowicz-Burkiewicz Department of Molecular Medicine, Medical University of Gdansk, Gdańsk, Poland
  • Tadeusz Pawełczyk Department of Molecular Medicine, Medical University of Gdansk, Gdańsk, Poland
Keywords: B cells, purinergic signalling, adenosine, adenosine triphosphate, P1 receptors, P2 receptors


Adenosine and adenosine triphosphate are involved in purinergic signalling which plays important role in control of immune system. Much data have been obtained regarding impact of purinergic signalling on dendritic cells, macrophages, monocytes and T lymphocytes, however less attention has been paid to purinergic regulation of B cells. This review summarizes present knowledge about ATP- and Ado-dependant signalling in B lymphocytes. Human B cells have been shown to express A2A­-R and A­3-R and each subtype of P2 receptors. Surface of B cells exhibits two antagonistic ectoenzymatic pathways, one relays on constitutive secretion and resynthesis of ATP while the second one depends on degradation of adenosine nucleotides to nucleosides and their subsequent degradation. Inactivated B cells remain under suppressive impact of autocrine and paracrine Ado however activated B lymphocytes increase ATP release and production. ATP protects B cells from suppressive impact of Ado and exerts pro-inflammatory impact on target tissues, it is also involved in IgM release. Ado synthesis however is related with optimal development, implantation and maintenance of plasmocyte population in bone marrow during primary immune response. Moreover Ado plays important role in immunoglobulin class switching which is a key mechanism of humoral immune response. Disruption of purinergic signalling is related with severe clinical implications. Impairment of Ado production in environment of B cells is one of the factors responsible for common variable immunodeficiency. List of evidence suggests also that dysfunction of immune system observed during diabetes may in part depend on disrupted ATP and Ado metabolism in B cells.


Burnstock G (2004) Introduction: P2 receptors. Current topics in medicinal chemistry 4.8: 793-803.

Burnstock G (2007) Purine and pyrimidine receptors. Cellular and Molecular Life Sciences 64.12: 1471-1483. http://doi.org/10.1007/s00018-007-6497-0

Burnstock G, Boeynaems JM (2014) Purinergic signalling and immune cells. Purinergic signalling 10(4): 529-564. http://doi.org/10.1007/s11302-014-9427-2

Cass CE, Young JD, Baldwin SA, Cabrita MA, Graham KA, Griffiths M, Jennings LL, Mackey JR, Ng AM, Ritzel MW, Vickers MF, Yao SY, (2002) Nucleoside transporters of mammalian cells. In Membrane transporters as drug targets. Gordon L. Amidon, Wolfgang Sadée eds, pp. 313-352. Springer US.

Cherukuri A, Cheng PC, Pierce SK (2001) The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. The Journal of Immunology 167(1): 163-172.

Chovancova Z, Vlkova M, Litzman J, Lokaj J, Thon V (2011) Antibody forming cells and plasmablasts in peripheral blood in CVID patients after vaccination. Vaccine 29(24): 4142-4150.

Conter LJ, Song E, Shlomchik MJ, Tomayko MM (2014) CD73 expression is dynamically regulated in the germinal center and bone marrow plasma cells are diminished in its absence. PloS one 9(3): e92009. http://doi.org/10.1371/journal.pone.0092009

Crotty S (2011) Follicular helper CD4 T cells (Tfh). Annual review of immunology 29: 621-663. http://doi.org/10.1146/annurev-immunol-031210-101400

Delves PJ, Roitt IM (2000) The immune system. New England journal of medicine 343(1): 37-49. http://doi.org/10.1056/NEJM200007063430107

Di Virgilio F, Vuerich M (2015) Purinergic signaling in the immune system. Autonomic Neuroscience 191: 117-123. http://doi.org/10.1016/j.autneu.2015.04.011

Dubyak GR (2009) Both sides now: multiple interactions of ATP with pannexin-1 hemichannels. Focus on “A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP”. American Journal of Physiology-Cell Physiology 296(2): C235-C241. http://doi.org/10.1152/ajpcell.00639.2008

Dubyak GR (2012) P2X7 receptor regulation of non‐classical secretion from immune effector cells. Cellular microbiology 14(11): 1697-1706. http://doi.org/10.1111/cmi.12001

Eibel H, Salzer U, Warnatz K (2010) Common variable immunodeficiency at the end of a prospering decade: towards novel gene defects and beyond. Current opinion in allergy and clinical immunology 10(6): 526-533. http://doi.org/10.1097/ACI.0b013e32833fea1c

Foerster C, Voelxen N, Rakhmanov M, Keller B, Gutenberger S, Goldacker, S Thiel J, Feske S, Peter HH, Warnatz K (2010) B cell receptor-mediated calcium signaling is impaired in B lymphocytes of type Ia patients with common variable immunodeficiency. The Journal of Immunology 184(12): 7305-7313. http://doi.org/10.4049/jimmunol.1000434

Frémeaux-Bacchi V, Fischer E, Lecoanet-Henchoz S, Mani JC, Bonnefoy JY, Kazatchkine MD (1998) Soluble CD21 (sCD21) forms biologically active complexes with CD23: sCD21 is present in normal plasma as a complex with trimeric CD23 and inhibits soluble CD23-induced IgE synthesis by B cells. International immunology 10(10): 1459-1466.

Gessi S, Varani K, Merighi S, Cattabriga E, Avitabile A, Gavioli R, Fortini C, Leung E, Mac Lennan S, Borea PA (2004) Expression of A3 adenosine receptors in human lymphocytes: up-regulation in T cell activation. Molecular pharmacology 65(3): 711-719. http://doi.org/10.1124/mol.65.3.711

Grden M, Podgorska M, Szutowicz A, Pawelczyk T (2005) Altered expression of adenosine receptors In hart of diabetic rat. Journal of physiology and pharmacology 56(4): 587.

Grden M, Podgorska M, Szutowicz A, Pawelczyk T (2007) Diabetes-induced alterations of adenosine receptors expression level in rat liver. Experimental and molecular pathology 83(3): 392-398. https://doi.org/10.1016/j.yexmp.2007.03.005

Gu B, Bendall LJ, Wiley JS (1998) Adenosine triphosphate–induced shedding of CD23 and L-selectin (CD62L) from lymphocytes is mediated by the same receptor but different metalloproteases. Blood 92(3): 946-951.

Henttinen T, Jalkanen S, Yegutkin GG (2003) Adherent leukocytes prevent adenosine formation and impair endothelial barrier function by Ecto-5′-nucleotidase/CD73-dependent mechanism. Journal of Biological Chemistry 278(27): 24888-24895. http://doi.org/10.1074/jbc.M300779200

Herlands RA, Christensen SR, Sweet RA., Hershberg U, Shlomchik MJ (2008) T cell-independent and toll-like receptor-dependent antigen-driven activation of autoreactive B cells. Immunity 29(2): 249-260. http://doi.org/10.1016/j.immuni.2008.06.009.

Herrera C, Casado V, Ciruela F, Schofield P, Mallol J, Lluis C, Franco R (2001) Adenosine A2B receptors behave as an alternative anchoring protein for cell surface adenosine deaminase in lymphocytes and cultured cells. Molecular pharmacology 59(1): 127-134. http://doi.org/10.1124/mol.59.1.127

Jacob F, Novo CP, Bachert C, Van Crombruggen K (2013) Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic signalling 9(3): 285-306. http://doi.org/10.1007/s11302-013-9357-4

Kocbuch K, Sakowicz-Burkiewicz M, Grden M, Szutowicz A, Pawelczyk T (2009) Effect of insulin and glucose on adenosine metabolizing enzymes in human B lymphocytes. Acta Biochim Pol 56(3): 439-446.

Koshiba M, Rosin DL, Hayashi N, Linden J, Sitkovsky MV (1999) Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometry studies with anti-A2A receptor monoclonal antibodies. Molecular pharmacology 55(3): 614-624.

Lee DH, Park KS, Kong ID, Kim JW, Han BG (2006) Expression of P2 receptors in human B cells and Epstein-Barr virus-transformed lymphoblastoid cell lines. BMC immunology 7(1): 22. http://doi.org/10.1186/1471-2172-7-22

Molina-Arcas M, Bellosillo B, Casado FJ, Montserrat E, Gil J, Colomer D, Pastor-Anglada M (2003) Fludarabine uptake mechanisms in B-cell chronic lymphocytic leukemia. Blood 101(6): 2328-2334. http://doi.org/10.1182/blood-2002-07-2236

Molina-Arcas M, Casado FJ, Pastor-Anglada M (2009) Nucleoside transporter proteins. Current vascular pharmacology 7(4): 426-434.

Muller LMAJ, Gorter KJ, Hak E, Goudzwaard WL, Schellevis FG, Hoepelman AIM, Rutten GEHM (2005) Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clinical infectious diseases 41(3): 281-288. http://doi.org/10.1086/431587

Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM (2015) The generation of antibody-secreting plasma cells. Nature Reviews Immunology 15(3): 160-171. http://doi.org/10.1038/nri3795

Panés J, Perry M, Granger DN (1999) Leukocyte-endothelial cell adhesion: avenues for therapeutic intervention. British journal of pharmacology 126(3): 537-550. http://doi.org/10.1038/sj.bjp.0702328

Pawelczyk T, Podgorska M, Sakowicz M (2003) The effect of insulin on expression level of nucleoside transporters in diabetic rats. Molecular pharmacology 63(1): 81-88. http://doi.org/10.1124/mol.63.1.81

Pawelczyk T, Sakowicz M, Podgorska M, Szczepanska-Konkel M (2003) Insulin induces expression of adenosine kinase gene in rat lymphocytes by signaling through the mitogen-activated protein kinase pathway. Experimental cell research 286(1): 152-163. http://doi.org/10.1016/S0014-4827(03)00090-9

Pawelczyk T, Sakowicz-Burkiewicz M, Kocbuch K, Szutowicz A (2005) Differential effect of insulin and elevated glucose level on adenosine handling in rat T lymphocytes. Journal of cellular biochemistry 96(6): 1296-1310. http://doi.org/10.1002/jcb.20642

Prakash MS, Chennaiah S, Murthy YS, Anjaiah E, Rao SA, Suresh C (2006) Altered adenosine deaminase activity in type 2 diabetes mellitus. Age 43(6.2): 44-6.

Rayah A, Kanellopoulos JM, Di Virgilio F (2012) P2 receptors and immunity. Microbes and infection 14(14): 1254-1262. http://doi.org/10.1016/j.micinf.2012.07.006

Rücker B, Abreu-Vieira G, Bischoff LB, Harthmann ÂDA, Sarkis JJ, Wink MR, Casali EA (2010) The nucleotide hydrolysis is altered in blood serum of streptozotocin-induced diabetic rats. Archives of physiology and biochemistry 116(2): 79-87. http://doi.org/10.3109/13813451003777067

Sakowicz M, Szutowicz A, Pawelczyk T (2005) Differential effect of insulin and elevated glucose level on adenosine transport in rat B lymphocytes. International immunology 17(2): 145-154. http://doi.org/10.1093/intimm/dxh195

Sakowicz-Burkiewicz M, Kocbuch K, Grden M, Maciejewska I, Szutowicz A, Pawelczyk T (2013) High glucose concentration impairs ATP outflow and immunoglobulin production by human peripheral B lymphocytes: involvement of P2X7 receptor. Immunobiology 218(4): 591-601. http://doi.org/10.1016/j.imbio.2012.07.010

Sakowicz-Burkiewicz M, Kocbuch K, Grden M, Szutowicz A, Pawelczyk T (2010) Adenosine 5'-triphosphate is the predominant source of peripheral adenosine in human B lymphoblasts. Journal of Physiology and Pharmacology 61(4): 491.

Sakowicz-Burkiewicz M, Kocbuch K, Grden M, Szutowicz A, Pawelczyk T (2009) Protein kinase C mediated high glucose effect on adenosine receptors expression in rat B lymphocytes. Acta physiologica Polonica 12(3): 145.

Saze Z, Schuler PJ, Hong CS, Cheng D, Jackson EK, Whiteside TL (2013) Adenosine production by human B cells and B cell–mediated suppression of activated T cells. Blood 122(1): 9-18. http://doi.org/10.1182/blood-2013-02-482406

Schena F, Volpi S, Faliti CE, Penco F, Santi S, Proietti M, Schenk U, Damonte G, Salis A, Bellotti M, Fais F, Tenca C, Gattorno M, Eibel H, Rizzi M, Warnatz K,Idzko M, Ayata CK, Rakhmanov M, Galli T, Martini A, Canossa M, Grassi F, Traggiai E (2013) Dependence of immunoglobulin class switch recombination in B cells on vesicular release of ATP and CD73 ectonucleotidase activity. Cell reports 3(6): 1824-1831. http://doi.org/10.1016/j.celrep.2013.05.022

Sengstake S, Boneberg EM, Illges H (2006) CD21 and CD62L shedding are both inducible via P2X7Rs. International immunology 18(7): 1171-1178. http://doi.org/10.1093/intimm/dxl051

Shah BR, Hux JE (2003) Quantifying the risk of infectious diseases for people with diabetes. Diabetes care 26(2): 510-513. http://doi.org/10.2337/diacare.26.2.510

Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes research and clinical practice 87(1): 4-14. http://doi.org/10.1016/j.diabres.2009.10.007

Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V (2014) Adenosine receptors: expression, function and regulation. International journal of molecular sciences 15(2): 2024-2052. http://doi.org/10.3390/ijms15022024

Sluyter R, Barden JA, Wiley JS (2001) Detection of P2X purinergic receptors on human B lymphocytes. Cell and tissue research 304(2): 231-236.

Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76(2): 301-314. http://doi.org/ 10.1016/0092-8674(94)90337-9

Venturi GM, Tu L, Kadono T, Khan AI, Fujimoto Y, Oshel P, Bock CB, Miller AS, Albrecht RM, Kubes P, Steeber DA, Tedder TF (2003) Leukocyte migration is regulated by L-selectin endoproteolytic release. Immunity 19(5): 713-724.

Wang L, Jacobsen SEW, Bengtsson A, Erlinge D (2004) P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC immunology 5(1): 16. http://doi.org/10.1186/1471-2172-5-16

Warrier AC, Rao NY, Kulpati DS, Mishra TK, Kabi BC (1995) Evaluation of adenosine deaminase activity and lipid peroxidation levels in diabetes mellitus. Indian Journal of Clinical Biochemistry 10(1): 9-13. http://doi.org/10.1007/BF02873661

Wu G, Marliss EB (1991) Deficiency of purine nucleoside phosphorylase activity in thymocytes from the immunodeficient diabetic BB rat. Clinical & Experimental Immunology 86(2): 260-265. http://doi.org/10.1111/j.1365-2249.1991.tb05807.x

Yegutkin GG, Henttinen T, Samburski SS, Spychala J, Jalkanen S (2002) The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. Biochemical Journal 367(1): 121-128. http://doi.org/10.1042/BJ20020439

Yegutkin GG, Mikhailov A, Samburski SS, Jalkanen S (2006) The detection of micromolar pericellular ATP pool on lymphocyte surface by using lymphoid ecto-adenylate kinase as intrinsic ATP sensor. Molecular biology of the cell 17(8): 3378-3385. http://doi.org/10.1091/mbc.E05-10-0993

Yegutkin GG, Auvinen K, Karikoski M, Rantakari P, Gerke H, Elima K, Maksimow M, Quintero IB, Vihko P, Salmi M, Jalkanen S (2014) Consequences of the lack of CD73 and prostatic acid phosphatase in the lymphoid organs. Mediators of inflammation 2014. http://doi.org/10.1155/2014/485743