Silver ions as EM marker of congo red ligation sites in amyloids and amyloid-like aggregates

  • Janina Rybarska
  • Leszek Konieczny
  • Anna Jagusiak
  • Katarzyna Chłopaś
  • Grzegorz Zemanek
  • Barbara Piekarska
  • Barbara Stopa
  • Piotr Piwowar
  • Olga Woźnicka
  • Irena Roterman Jagiellonian University - Medical College
Keywords: Congo red, Titan yellow, amyloids, supramolecular dyes, metal markers, light chain, amyloid-like aggregates, edge loop


Congo red (CR) which is known to act as selective amyloid ligand may when binds to these protein forms reflect their internal molecular structure. The disclosure by EM of sites binding the dye and their distribution in amyloids and amyloid-like aggregates formed in vitro is the focus of our work. In order to produce the required contrast, CR has been indirectly combined with metal via including by intercalation of Titan yellow (TY) which exhibits relatively strong affinity for silver ions. The resulting combined ligand retains its ability to bind to proteins which it owes to CR and can easily be detected in EM studies thanks to TY less active in penetration to proteins. We have found however that in protein aggregates where unfolding is stabilized by aggregation and therefore irreversible, TY alone may serve as both ligand and metal carrier.The formation of ordered structures in amyloids were studied using IgG light chains with amyloidogenic properties, converted into amyloids through shaking. The resulting EM images were subjected to interpretation on the basis of the authors’ earlier research into the CR/light chain complexation process. Results indicate that dimeric light chains, which are the subject of our study, produce amyloids or amyloid-like complexes with chain-like properties and strong helicalization tendencies. Cursory analysis suggests that edge polypeptide loops belonging to unstable light chains form intermolecular bridges which promote creation of loose gel deposits, or are otherwise engaged in swapping processes leading to higher structural ordering.

Author Biography

Irena Roterman, Jagiellonian University - Medical College
Department of Bioinformatics and TelemedicineJagiellonian University - Medical College


Banach M, Konieczny L, Roterman I. (2014) The fuzzy oil drop model, based on hydrophobicity density distribution, generalizes the influence of water environment on protein structure and function. J. Theor. Biol. 359, 6-17. doi: 10.1016/j.jtbi.2014.05.007.

Barrow CJ, Yasuda A, Kenny PTM, Zagorski MG. (1992) Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer's disease. Analysis of circular dichroism spectra. J. Mol. Biol., 225, 1075-1093. PMID: 1613791

Bennett MJ, Schlunegger MP, Eisenberg D. (1995) 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 4(12), 2455-68. DOI: 10.1002/pro.5560041202

Bross P, Corydon TJ, Andresen BS, Jørgensen MM, Bolund L, Gregersen N. (1999) Protein misfolding and degradation in genetic diseases Hum Mutat. 14(3), 186-198. DOI: 10.1002/(SICI)1098-1004(1999)14:3<186::AID-HUMU2>3.0.CO;2-J

Chłopaś K, Jagusiak A, Konieczny L, Piekarska B, Roterman I, Rybarska J, Stopa B, Zemanem G, Bielańska E, Piwowar P, Sadlik K. (2015) The use of Titan yellow dye as a metal ion binding marker for studies on the formation of specific complexes by supramolecular Congo red Bio-Algorithms and Med-Systems, 11, 9-18. DOI: 10.1515/bams-2015-0001,

Churukian CJ. (2000) Improved Puchtler’s Congo red method for demonstrating amyloid. J. Histotechnology 23, 139-141.

Cohen FE. (1999) Protein misfolding and prion diseases. J. Mol. Biol. 293(2), 313-320. PMID: 10550211

Colon W, Kelly JW. (1992) Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry. 31(36), 8654-8660. PMID: 1390650

Dealwis C, Wall J. (2004) Towards understanding the structure-function relationship of human amyloid disease. Curr Drug Targets, 5(2), 159-171. PMID: 15011949

Demeule B, Gurny R, Arvinte T. (2007) Detection and characterization of protein aggregates by fluorescence microscopy. International J. Pharmaceutics 329, 37-45. PMID: 17005340

Elhaddaoui A, Pigorsch E, Delacourte A, Turrell S. (1995) Competition of Congo red and Thioflavin S binding to amyloid sites in Alzheimer’s diseased tissue. Biospectroscopy, 1, 351-356.

Ewert AS, Honegger A, Plückthun A. (2004) Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods, 34, 184-199. DOI: 10.1016/j.ymeth.2004.04.007

Fan ZC, Shan L, Guddat LW, He XM, Gray WR, Raison RL, Edmundson AB. (1992) Three-dimensional structure of an Fv from a human IgM immunoglobulin. J. Mol. Biol. 228(1), 188-207. PMID: 1447781

Fink AL. (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des., 3(1), R9-23. PMID: 9502314

Frid P, Anisimov SV, Popovic N. (2007) Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 53, 135-160. DOI:10.1016/j.brainresrev.2006.08.001

Heegaard NH, Sen JW, Nissen MH. (2000) Congophilicity (Congo red affinity) of different beta2-microglobulin conformations characterized by dye affinity capillary electrophoresis. J. Chromatogr A. 894(1-2), 319-27. PMID: 11100875

Helms LR, Wetzel R. (1996) Specificity of abnormal assembly in immunoglobulin light chain deposition disease and amyloidosis J. Mol. Biol. 257(1), 77-86. PMID: 8632461

Howie AJ, Brewer DB. (2009) Optical properties of amyloid stained by Congo red: history and mechanisms.. Micron, 40,285-301. DOI:10.1016/j.micron.2008.10.002

Hurle, MR, Helms LR, Li L, Chan W, Wetzel R. (1994) A role for destabilizing amino acid replacements in light-chain amyloidosis. Proc. Natl. Acad. Sci. U S A. 91(12), 5446-5450. PMID: 8202506

Iconomidou VA, Chryssikos GD, Gionis V, Hoenger A, Hamodrakas SJ. (2003) FT-Raman spectroscopy as diagnostic tool of Congo red binding to amyloids.. Biopolymers. 72(3), 185-192. DOI: 10.1002/bip.10344

Inouye H, Kirschner DA. (2000) A beta fibrillogenesis: kinetic parameters for fibril formation from congo red binding. J. Struct Biol 130, 123-129. PMID: 10940220

Jagusiak A, Konieczny L, Krol M, Marszalek P, Piekarska B, Piwowar P, Roterman I, Rybarska J, Stopa B, Zemanem G. (2014) Intramolecular immunological signal hypothesis revived--structural background of signalling revealed by using Congo Red as a specific tool. Mini Rev Med Chem. 14(14), 1104-1113. PMID: 25429660

Jiang X, Smith CS, Petrassi HM, Hammarström P, White JT, Sacchettini JC, Kelly JW. (2001) An engineered transthyretin monomer that is nonamyloidogenic, unless it is partially denatured Biochemistry. 40(38), 11442-52. PMID: 11560492

Jin L-W, Claborn KA, Kurimoto M, Geday MA, Maezawa I, Sohraby F, Estrada M, Kaminsky W, Kahr B. (2003) Imaging linear birefringence and dichroism in cerebral amyloid pathologies. PNAS, 100, 15294-15298. DOI: 10.1073/pnas.2534647100

Kelly JW. (1997) Amyloid fibril formation and protein misassembly: a structural quest for insights into amyloid and prion diseases. Structure. 5(5), 595-600. PMID: 9195890

Khurana R, Uversky VN, Nielsen L, Fink AL. (2001) Is Congo red an amyloid-specific dye? J. Biol. Chem. 276(25), 22715-22721. PMID: 11410601

Khurana R, Gillespie JR, Talapatra A, Minert LJ, Ionescu-Zanetti C, Millett I, Fink AL. (2001) Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates. Biochemistry, 40(12), 3525-35. PMID: 11297418

Kim YS, Randolph TW, Manning MC, Stevens FJ, Carpenter JF. (2003) Congo red populates partially unfolded states of an amyloidogenic protein to enhance aggregation and amyloid fibril formation J. Biol. Chem. 278(12), 10842-10850.

King HGC, Pruden G. (1967) The component of commercial titan yellow most reactive towards magnesium: Its isolation and use in determining magnesium in silicate minerals.. Analyst, 92, 83-90. DOI: 10.1074/jbc.M212540200

Klunk WE, Jacob RF, Mason RP. (1999) Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay. Anal Biochem. 266 (1), 66-76. PMID: 9887214

Król M, Roterman I, Piekarska B, Konieczny L, Rybarska J, Stopa B, Spólnik P, Szneler E. (2005) An approach to understand the complexation of supramolecular dye Congo red with immunoglobulin L chain lambda. Biopolymers. 77(3), 155-162. DOI: 10.1002/bip.20197

Lakdawala AS, Morgan DM, Liotta DC, Lynn DG, Snyder JP. (2002) Dynamics and fluidity of amyloid fibrils: a model of fibrous protein aggregates. J. Am. Chem. Soc. 124(51), 15150-15151. PMID: 12487571

Lendel C, Bolognesi B, Wahlström A, Dobson CM, Gräslund A. (2010) Detergent-like interaction of Congo red with the amyloid beta peptide. Biochemistry. 49(7):1358-60. DOI: 10.1021/bi902005t

Liu Y, Hart PJ, Schlunegger MP, Eisenberg D. (1998) The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution. Proc Natl Acad Sci U S A. 95(7), 3437-3442. PMID: 9520384

Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R. (2013) Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue. Cell. 154(6):1257-68. DOI: 10.1016/j.cell.2013.08.035

Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R. (2005) 3D structure of Alzheimer's amyloid-beta(1-42) fibrils. Proc Natl Acad Sci U S A. 102(48):17342-7. DOI: 10.1073/pnas.0506723102

Maji SK, Wang L, Greenwald J, Riek R. (2009) Structure-activity relationship of amyloid fibrils. FEBS Letters 583, 2610-2617. DOI: 10.1016/j.febslet.2009.07.003

Mizobata T, Kawata Y. (1994) The guanidine-induced conformational changes of the chaperonin GroEL from Escherichia coli. Evidence for the existence of an unfolding intermediate state. Biochim Biophys Acta. 1209(1), 83-8. PMID: 7947986

Nagradova NK. (2002) Three-dimensional domain swapping in homooligomeric proteins and its functional significance. Biochem. (Moscow) 67, 839-849. PMID: 12223084

Nelson R, Esenberg D. (2006) Recent atomic models of amyloid fibril structure. Curr. Op. Struct. Biol. 16, 260-265. PMID: 16563741

Pedersen M.Ø., Mikkelsen K, Behrens MA, Pedersen JS, Enghild JJ, Skrydstrup T, Malmendal A, Nielsen NC. (2010) NMR reveals two-step association of Congo Red to amyloid β in low-molecular-weight aggregates. J Phys Chem B. 114(48):16003-10. DOI: 10.1021/jp108035y

Pellarin R, Schuetz P, Guarnera E, Caflisch AJ. (2010) Amyloid fibril polymorphism is under kinetic control. J. Am. Chem. Soc. 132(42), 14960-14970. DOI: 10.1021/ja106044u

Petkova AT, Yau WM, Tycko R. (2006) Experimental constraints on quaternary structure in Alzheimer's beta-amyloid fibrils. Biochemistry. 45(2):498-512. DOI: 10.1021/bi051952q

Picken MM. (2001) The changing concepts of amyloid. Arch. Patol. Lab. Med., 125, 38-43. DOI: 10.1043/0003-9985(2001)125<0038:TCCOA>2.0.CO;2

Piekarska B, Konieczny L, Rybarska J, Stopa B, Zemanek G, Szeler E, Król M, Nowak M, Roterman I. (2001) Heat-induced formation of a specific binding site for self-assembled Congo Red in the V domain of immunoglobulin L chain lambda. Biopolymers. 59(6), 446-456. DOI: 10.1002/1097-0282(200111)59:6<446::AID-BIP1049>3.0.CO;2-X

Pollack SJ, Sadler IIJ, Hawtin SR, Tailor VJ, Shearman MS. (1995) Sulfonated dyes attenuate the toxic effects of beta-amyloid in a structure-specific fashion. Neurosci Lett. 197(3), 211-4. PMID: 8552301

del Pozo YL, Ortiz E, Sánchez R, Sánchez-López R, Güereca L, Murphy CL, Allen A, Wall JS, Fernández-Velasco DA, Solomon A, Becerril B. (2008) Influence of the germline sequence on the thermodynamic stability and fibrillogenicity of human lambda 6 light chains. Proteins. 72(2), 684-692. DOI: 10.1002/prot.21934

Pratim Bose P, Chatterjee U, Xie L, Johansson J, Göthelid E, Arvidsson PI. (2010) Effects of Congo red on aβ(1-40) fibril formation process and morphology. ACS Chem Neurosci. 1(4):315-24. DOI: 10.1021/cn900041x

Qin Z, Hu D, Zhu M, Fink AL. (2007) Structural characterization of the partially folded intermediates of an immunoglobulin light chain leading to amyloid fibrillation and amorphous aggregation. Biochemistry. 46(11), 3521-3531. DOI: 10.1021/bi061716v

Quintas A, Vaz DC, Cardoso I, Saraiva MJ, Brito RM. (2001) Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants. J Biol Chem. 276(29), 27207-27213. DOI: 10.1074/jbc.M101024200

Roterman I, Rybarska J, Konieczny L, Skowronek M, Stopa B, Piekarska B, Bakalarski G. (1998) Congo red bound to α-1-proteinase inhibitor as a model of supramolecular ligand and protein complex Computers Chem. 22(1), 61-70.

Schormann N, Murrell JR, Liepnieks JJ, Benson MD. (1995) Tertiary structure of an amyloid immunoglobulin light chain protein: a proposed model for amyloid fibril formation. Proc. Natl. Acad. Sci. U S A. 92(21), 9490-9494. PMID: 7568160

Serpell LC. (2000) Alzheimer's amyloid fibrils: structure and assembly. Biochim Biophys Acta. 1502(1):16-30. PMID: 10899428

Sinha N, Tsai CJ, Nussinov R. (2001) A proposed structural model for amyloid fibril elongation: domain swapping forms an interdigitating beta-structure polymer. Protein Eng. 14(2), 93-103. PMID: 11297667

Skowronek M, Stopa B, Konieczny L, Rybarska J, Szneler E, Bakalarski G, Roterman I. (1998) Self- assembly of Congo red – A theoretical and experimental approach to identify its supramolecular organization in water and salt solution. Biolpolymers, 46, 267-281.

Spólnik P, Konieczny L, Piekarska B, Rybarska J, Stopa B, Zemanem G, Król M, Roterman I. (2004) Instability of monoclonal myeloma protein may be identified as susceptibility to penetration and binding by newly synthesized Congo red derivatives Biochimie. 86(6), 397-401. PMID: 15358056

Stopa B, Górny M, Konieczny L, Piekarska B, Rybarska J, Skowronek M, Roterman I. (1998) Supramolecular ligands: monomer structure and protein ligation capability. Biochimie. 80(12), 963-968. PMID: 9924974

Stopa B, Piekarska B, Konieczny L, Rybarska J, Spólnik P, Zemanem G, Roterman I, Król M. (2003) The structure and protein binding of amyloid-specific dye reagents. Acta Bioch Pol 50 (4), 1213-1227. PMID: 14740008

Teng PK, Anderson NJ, Goldschmidt L, Sawaya MR, Sambashivan S, Eisenberg D. (2012) Ribonuclease A suggests how proteins self-chaperone against amyloid fiber formation.. Protein Sci. 21(1), 26-37. DOI: 10.1002/pro.754

Turnell WG, Finch JT. (1992) Binding of the dye congo red to the amyloid protein pig insulin reveals a novel homology amongst amyloid-forming peptide sequences. J. Mol. Biol. 227, 1205-1223. PMID: 1433294

Tycko R. (2004) Progress towards a molecular-level structural understanding of amyloid fibrils.. Curr Opin Struct Biol. 14(1):96-103. DOI: 10.1016/

Wall J, Schell M, Murphy C, Hrncic RR, Stevens FJ, Solomon A. (1999) Thermodynamic instability of human lambda 6 light chains: correlation with fibrillogenicity. Biochemistry. 38(42), 14101-14108. PMID: 10529258

Wood SJ, Maleeff B, Hart T, Wetzel R. (1996) Physical, morphological and functional differences between ph 5.8 and 7.4 aggregates of the Alzheimer's amyloid peptide Abeta. J. Mol. Biol. 256(5), 870-7. DOI: 10.1006/jmbi.1996.0133

Woodcock S, Henrissat B, Sugiyama J. (1995) Docking of congo red to the surface of crystalline cellulose using molecular mechanics. Biopolymers. 36(2), 201-210. DOI: 10.1002/bip.360360208

Wu C, Wang Z, Lei H, Zhang W, Duan Y. (2007) Dual binding modes of Congo red to amyloid protofibril surface observed in molecular dynamics simulations. J. Am. Chem. Soc. 129(5), 1225-1232. DOI: 10.1021/ja0662772

Wu C, Scott J, Shea JE. (2012) Binding of Congo red to amyloid protofibrils of the Alzheimer Aβ(9-40) peptide probed by molecular dynamics simulations. Biophys J. 103(3):550-7. DOI: 10.1016/j.bpj.2012.07.008

Yang M, Lei M, Huo S. (2003) Why is Leu55-->Pro55 transthyretin variant the most amyloidogenic: insights from molecular dynamics simulations of transthyretin monomers. Prot Sci 12, 1222-1231. DOI: 10.1110/ps.0239703