The perplexities of ZC3H12A self-mRNA regulation

  • Mateusz Wawro Jagiellonian University; Faculty of Biochemistry, Biophysics and Biotechnology
  • Jakub Kochan Jagiellonian University; Faculty of Biochemistry, Biophysics and Biotechnology
  • Aneta Kasza Jagiellonian University; Faculty of Biochemistry, Biophysics and Biotechnology
Keywords: RNase, ZC3H12A/MCPIP1, transcripts turnover


The mechanisms regulating transcripts turnover are key processes in the regulation of gene expression. The list of proteins involved in mRNAs degradation is still growing, however, the details of RNase-mRNAs interaction are not fully understood. ZC3H12A is a recently discovered inflammation-related RNase engaged in the control of proinflammatory cytokines transcripts turnover. ZC3H12A regulates also its own transcript half-live. We studied the details of this regulation. Our results confirm the importance of the 3’UTR in ZC3H12A-dependent ZC3H12A mRNA degradations. We compared mouse and human stem‑loop structures present in this region and discovered that human conserved stem-loop structure is not sufficient for ZC3H12A-dependent degradation. However, this structure is important for ZC3H12A mRNA post-transcriptional regulation. Our studies emphasize the importance of surroundings of the identified stem-loop structure for its biological activity. Removing of this region together with stem-loop structure greatly inhibits ZC3H12A regulation of the investigated 3’-untranslated region (3’UTR).

Author Biographies

Mateusz Wawro, Jagiellonian University; Faculty of Biochemistry, Biophysics and Biotechnology
Department of Cell Biochemistry
Jakub Kochan, Jagiellonian University; Faculty of Biochemistry, Biophysics and Biotechnology
Department of Cell Biochemistry
Aneta Kasza, Jagiellonian University; Faculty of Biochemistry, Biophysics and Biotechnology

Department of Cell Biochemistry


Chomczynski, P. and Sacchi, N. (2006). The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1, 581–585.

Iwasaki, H., Takeuchi, O., Teraguchi, S., Matsushita, K., Uehata, T., Kuniyoshi, K., Satoh, T., Saitoh, T., Matsushita, M., Standley, D. M., et al. (2011). The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR–IL-1R by controlling degradation of regnase-1. Nat. Immunol. 12, 1167–1175.

Kochan, J., Wawro, M. and Kasza, A. (2015). Simultaneous detection of mRNA and protein in single cells using immunofluorescence-combined single-molecule RNA FISH. Biotechniques 59, 209–221. 10.2144/000114340

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., Mcgettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.

Li, M., Cao, W., Liu, H., Zhang, W., Liu, X., Cai, Z., Guo, J., Wang, X., Hui, Z., Zhang, H., et al. (2012). MCPIP1 Down-Regulates IL-2 Expression through an ARE-Independent Pathway. PLoS One 7, 1–11.

Liang, J., Saad, Y., Lei, T., Wang, J., Qi, D., Yang, Q., Kolattukudy, P. E. and Fu, M. (2010). MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J. Exp. Med. 207, 2959–73.

Lin, R. J., Chien, H. L., Lin, S. Y., Chang, B. L., Yu, H. P., Tang, W. C. and Lin, Y. L. (2013). MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation. Nucleic Acids Res. 41, 3314–3326.

Lin, R.-J., Chu, J.-S., Chien, H.-L., Tseng, C.-H., Ko, P.-C., Mei, Y.-Y., Tang, W.-C., Kao, Y.-T., Cheng, H.-Y., Liang, Y.-C., et al. (2014). MCPIP1 Suppresses Hepatitis C Virus Replication and Negatively Regulates Virus-Induced Proinflammatory Cytokine Responses. J. Immunol. 193, 4159–4168.

Liu, S., Qiu, C., Miao, R., Zhou, J., Lee, A., Liu, B., Lester, S. N., Fu, W., Zhu, L., Zhang, L., et al. (2013). MCPIP1 restricts HIV infection and is rapidly degraded in activated CD4+ T cells. Proc. Natl. Acad. Sci. U. S. A. 110, 19083–8.

Matsushita, K., Takeuchi, O., Standley, D. M., Kumagai, Y., Kawagoe, T., Miyake, T., Satoh, T., Kato, H., Tsujimura, T., Nakamura, H., et al. (2009). Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185–1190.

Mino, T., Murakawa, Y., Fukao, A., Vandenbon, A., Wessels, H. H., Ori, D., Uehata, T., Tartey, S., Akira, S., Suzuki, Y., et al. (2015). Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058–1073.

Mizgalska, D., Wegrzyn, P., Murzyn, K., Kasza, A., Koj, A., Jura, J., Jarzab, B. and Jura, J. (2009). Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1b mRNA. FEBS J. 276, 7386–7399.

Suzuki, H. I., Arase, M., Matsuyama, H., Choi, Y. L., Ueno, T., Mano, H., Sugimoto, K. and Miyazono, K. (2011). MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol. Cell 44, 424–436.

Uehata, T. and Akira, S. (2013). mRNA degradation by the endoribonuclease Regnase-1/ZC3H12a/MCPIP-1. Biochim. Biophys. Acta - Gene Regul. Mech. 1829, 708–713.

Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. and Barton, G. J. (2009). Jalview Version 2-A multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191.

Yokogawa, M., Tsushima, T., Noda, N. N., Kumeta, H., Enokizono, Y., Yamashita, K., Standley, D. M., Takeuchi, O., Akira, S. and Inagaki, F. (2016). Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions. Sci. Rep. 6, 22324.

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.