Imiquimod-induced psoriasis model: induction protocols, model characterization and factors adversely affecting the model

Manahel Mahmood Alsabbagh

College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Kingdom of Bahrain

Imiquimod-induced psoriasis is widely-employed to study disease pathogenesis and to screen drugs. While the original protocol was published more than a decade ago and has been rigorously used in research since then, a modified protocol was described recently with several advantages including milder systemic manifestations although the disease morphology is highly conserved. Being a toll-like receptor 7 and 8 agonist, IL-23/IL-17 axis predominates in imiquimod-induced psoriasis. In addition, different immunocytes were described to aggravate or suppress the disease. This article aims to review the currently available protocols of imiquimod-induced psoriasis in vivo, to characterize the model as described in literature and to define the five important independent factors adversely influencing the model which researchers should pay attention to.

Keywords: animal model, B-cell, IL-17, IL-23, imiquimod-induced psoriasis, T-cell

Received: 14 July, 2022; revised: 15 May, 2023; accepted: 18 July, 2023; available on-line: 22 November, 2023

*e-mail: mms080138@rcsi.com

Abbreviations: PASI, Psoriasis Area and Severity Index

INTRODUCTION

Animal models of psoriasis are categorized into four categories: the first category represents models resulting from spontaneous mutations, such as homozygous ascheia (Scd1ab/Scd1ab) and flaky skin (TtcΔ/fsn) mice where the latter model shares with human psoriasis acanthosis, parakeratosis, and corneal neutrophils infiltration. The second category represents genetically-engineered models where epidermal proteins like keratins and/or cytokines are modified to produce features resembling psoriasis. The third category includes humanized models or models generated by xenotransplantation where lesional skin biopsy or skin equivalent is transplanted to mice. A recently-described but frequently used model is the directly xenotransplanted blood vessels in the dermal papillae were observed among both groups. Consistently, immunohistochemical staining shows infiltration of dendrocytes, neutrophils and CD4+ cells. Imiquimod also induces IL-23 and augments IL-17A, IL-17F and IL-22 production (van der Fits et al., 2009).

Horvath and others (Horvath et al., 2019) further modified the original protocol. They applied 25 mg of imiquimod 5% cream (Aldara) daily, equivalent to 3.125 mg of active ingredient, on the shaved back and right ear of BALB/c and C57BL/6 mice for five or six consecutive days and they assessed the severity of psoriasis using modified Psoriasis Area and Severity Index (PASI). Signs of psoriasis start to appear within the first three days and severity steadily increases till the end of the experiment. Authors reported lack of difference between the two strains of mice. Imiquimod-treated skin shows the cardinal histopathological features of psoriasis such as acanthosis (Singh et al., 2019), parakeratosis and hypogranulosis. Immunohistochemical staining shows infiltration of dendrocytes, neutrophils and CD4+ cells. Imiquimod also induces IL-23 and augments IL-17A, IL-17F and IL-22 production (van der Fits et al., 2009).

This article aims to review the model of imiquimod-induced psoriasis, highlighting the currently published two induction protocols and characterizing the model in terms of dominant cytokines and cellular infiltrate. It also tackles the five factors that may influence disease modelization.

THE ORIGINAL AND MODIFIED PROTOCOLS OF IMIQUIMOD-INDUCED PSORIASIS

Imiquimod was first described in the mid-1990s as an immunomodulatory agent that augments the innate and adaptive immune systems. It is a toll-like receptor-7 and 8 agonist. It obtained the US Food and Drug Administration approval to treat anogenital warts, facial actinic keratoses and superficial basal cell carcinoma (Hanna et al., 2016). Topical application of imiquimod may induce psoriasis (Wu & Strutton, 2004).

Van der Fits and others (van der Fits et al., 2009) were the first to employ imiquimod to modelize psoriasis in vivo. They applied 62.5 mg of imiquimod 5% cream (Aldara) daily, equivalent to 3.125 mg of active ingredient, on the shaved back and right ear of BALB/c and C57BL/6 mice for five or six consecutive days and they assessed the severity of psoriasis using modified Psoriasis Area and Severity Index (PASI). Signs of psoriasis start to appear within the first three days and severity steadily increases till the end of the experiment. Authors reported lack of difference between the two strains of mice. Imiquimod-treated skin shows the cardinal histopathological features of psoriasis such as acanthosis (Singh et al., 2019), parakeratosis and hypogranulosis. Immunohistochemical staining shows infiltration of dendrocytes, neutrophils and CD4+ cells. Imiquimod also induces IL-23 and augments IL-17A, IL-17F and IL-22 production (van der Fits et al., 2009).
er, applied the cream for shorter (three to four days) or longer periods (vast majority for seven days, up to 15 days). Prolonged daily application of imiquimod cream results in tachyphyaxis where Ki-67 expression diminishes in alignment with spontaneous attenuation and disappearance of erythema and scaling at three to four weeks despite continuous application of the cream (Kataoka et al., 2018).

Some studies lack a positive control; but where a positive control was used, it is a topical or systemic preparation that matches the route of administration of the experimental agent. Topical control preparations include betamethasone, calcitriol, clodetasol, dexamethasone, dithranol, methotrexate and tacrolimus. Systemic control preparations include cyclosporine orally, dexamethasone orally and intraperitoneally, etanercept, methotrexate orally and intraperitoneally and tacrolimus.

CHARACTERIZATION OF IMIQUIMOD-INDUCED PSORIASIS MODEL

Jabeen and others (Jabeen et al., 2020) characterized the model of imiquimod-induced psoriasis where they applied 62.5 mg of imiquimod 5% cream for eight days. Cutaneous concentration of imiquimod approaches 100 μg/g on day 2 and it doubles by six folds on day 8 corresponding with a pronounced worsening of redness, thickness, scaling and total modified PASI. Acanthosis is evident on day 8 compared with day 2, explaining the clinically apparent thickness. Dermal hypervascularity is also marked, explaining the progressive redness. In terms of cytokine profile, elevation of IL-1β, IL-6 and IL-17A was observed in skin and TNF-α and IL-17A in serum. Disease progression associates with elongation of spleen, enlargement of total area of lymph nodes, and loss of weight independently of food intake (Zhang et al., 2020).

Macrophages and dendrocytes were investigated in the current model of psoriasis. While plasmacytoid dendrocytes are absent in imiquimod-induced lesions, the model shows a biphasic cellular behaviour. During the early phase, neutrophils infiltrate the epidermis and monocytes predominate in the dermis. Whereas in the late phase, Langerhans cells are pronounced in the epidermis and macrophages in the dermis. Depletion of Langerhans cells results in massive neutrophil infiltrate during the late phase, suggesting a potential anti-inflammatory role of Langerhans cells (Terhorst et al., 2015). On the contrary (Xiao et al., 2017) concluded that Langerhans cell depletion attenuates psoriasis and downregulates psoriasis-associated cytokine gene expression. (Lee et al., 2018) found that resident and monocyte-derived Langerhans cells secrete IL-23. Depletion of these cells inhibits IL-22 and IL-17A secretion (Lee et al., 2018), diminishes gamma-delta T-cell infiltration (Lee, 2016) and ultimately, attenuates psoriasis (Lee et al., 2018). Parallelly (Yoshiki et al., 2014) found IL-23-secreting Langerhans cells to induce IL-17A-producing gamma-delta T-cells. Depletion of Langerhans cells decreases Th-17-related cytokines and ameliorates psoriasis. In contrast, Kusuba and others (Kusuba et al., 2016) found that depletion of neutrophils early during psoriasis induction inhibits the infiltration of dermal monocytes, whereas depletion of both, neutrophils and monocytes, significantly attenuates psoriasis (Kusuba et al., 2016).

While IL-17 receptor is expressed on different cells, including T-cells and keratinocytes, its importance is cell-specific. For instance, deletion of keratinocyte’s IL-17 receptor reduces neutrophil infiltration and abolishes psoriasis; yet, this is not the case with T-cell-expressed receptor, emphasizing on keratinocytes’ role in neutrophil chemotraction (Moos et al., 2019). Likewise, IL-17 abrogation inhibits imiquimod-induced psoriasis (Ha et al., 2013). On the contrary (El Malki et al., 2013) found that in IL-17A receptor-knockout mice, imiquimod may still induce psoriasis independently of IL-17 pathway. The C-X-C motif chemokine receptor type-2 is involved in neutrophil chemotraction as well. It promotes neutrophil-produced leukotriene-B4, and augments neutrophil chemotaxis and infiltration (Sumida et al., 2014). Likewise, kallikrein-related peptidase-8 is elevated in psoriasis. If knocked out, the severity of imiquimod-induced psoriasis is comparable to wildtype, however, lesions lack neutrophil microabscesses (Inuma et al., 2015).

IL-1 and IL-36α chemoattract neutrophils. Both molecules mediate human generalized pustular psoriasis which is accompanied by systemic symptoms such as fever and malaise. In the current model of psoriasis, mice also display systemic symptoms such as weight loss and generalized malaise, suggesting the contribution of IL-1 and IL-36α to model development. Deficiency of IL-1 receptor-1 or IL-36α variably attenuates psoriasis; however, deficiency of both absolutely abolishes the disease (Alvarez & Jensen, 2016). IL-36 role is further verified in IL-36 receptor-knockout mice where these are resistant to imiquimod (Goldstein et al., 2019).

Imiquimod-treated mice exhibit antihistamine-resistant itching that is largely driven by μ-opioid receptor located in the epidermis, the dorsal root ganglia, and the spinal cord. In alignment, naloxone, a μ-opioid antagonist successfully inhibits itching in imiquimod-treated mice (Takahashi et al., 2017). Itching is also mediated by sphingosine 1-phosphate receptor-3, which if knocked out, scratching behaviour improves (Hill et al., 2020). In addition, Oishi and others (Oishi et al., 2019) found imiquimod treatment to associate with expansion of mastocytes and overexpression of the nerve growth factor, the neurotrophic factor neurotrophin 3 and enkephalin precursor preproenkephalin (Oishi et al., 2019).

REGULATION OF IMIQUIMOD-INDUCED PSORIASIS

Imiquimod-induced psoriasis is negatively regulated by B-cells (Yanaba et al., 2013), regulatory T-cells (Choi et al., 2020; Oka et al., 2017), matrix remodelling associated-7 (Ning et al., 2018), indoleamine 2, 3-dioxygenase 2 (Elizei et al., 2018; Fujii et al., 2020), IFN regulatory factor-2 (Kawaguchi et al., 2018), IFN regulatory factor-5 (Nakao et al., 2020), dermokine 3/γ (Tokuriki et al., 2016), IL-10 (Jin et al., 2018), IL-27 (Chen et al., 2017; Shibata et al., 2013), poly(ADP-ribose) polymerase-1 (Kiss et al., 2020), endogenous n-3 polyunsaturated fatty acids (Qin et al., 2014), L-selectin and ICAM-1 (Mitsu et al., 2015).

The regulatory role of B-cells, regulatory T-cells and IL-10 is evident in different studies. In a model of CD19−/− mice, exacerbation of psoriasis is attributed to the loss of IL-10-secreting regulatory B-cell subset (Yanaba et al., 2013). Likewise, depletion of regulatory T-cells disturbs the closely regulated gamma-delta T-cells, augments TNF-α and IL-17A secretion and aggravates the disease (Choi et al., 2020). Neutralization of IL-10 in imiquimod-induced psoriasis promotes epidermal thickening, increases neutrophil infiltration and accentuates IL-23/IL-17 axis (Xu et al., 2018). Likewise, knocking out IL-10 aggravates psoriasis macroscopically and mi-
croscopically, emphasising on its anti-inflammatory role in the disease (Jin et al., 2018).

FACTORS INFLUENCING IMIQUIMOD-INDUCED PSORIASIS

Five factors adversely modify the model of imiquimod-induced psoriasis: the brand of imiquimod 5% cream, mouse strain, mouse sex, stress and obesity.

The brand of the commercially available imiquimod 5% cream may interfere with the model. While (Singh et al., 2019) claimed generic formulations of imiquimod to produce a psoriasiform inflammation that is comparable to Aldara, Luo and others (Luo et al., 2016) found that in comparison with Aldara, Likeje cream mediates a milder form of psoriasis with a modified PASI of 3.25±1.56 (compared with 9.81±0.84 in Aldara), a less pronounced acanthosis with a Backer’s score of 2.93±1.07 (compared with 6.47±1.50 in Aldara) and an epidermal thickness of 49.79±14.16 μm (compared with 85.62±17.55 μm in Aldara), concluding that different brands may adversely affect the successful establishment of the model (Luo et al., 2016).

In terms of the employed strain of mice, although van der Fits and others (van der Fits et al., 2009) described their protocol in two different strains, (Swindell et al., 2017) reported variation in modelization across six different strains of mice using a five-day course of 62.5 mg imiquimod 5% cream (Aldara). Microarray showed gene expression of imiquimod-induced psoriasis to largely overlap with that of human psoriasis. C57BL/6 mice, in particular, show the highest consistency, in contrast to MOLF/Eij and 129X1/Sv mice where gene expression is opposite to human psoriasis. In terms of IL-17 gene expression, C57BL/6 mice highly express IL-17A, IL-17B, IL-17C and IL-17F. D’Souza and others (D’Souza et al., 2020) examined the psoriatic changes induced by imiquimod in two different strains: BALB/c and the Swiss mice and concluded that imiquimod induces psoriatic changes macroscopically and microscopically among both strains, although these are more pronounced in the Swiss mice.

In terms of sex differences, and compared with male mice, female mice develop severe psoriasis in response to imiquimod, resulting in a greater weight loss, significant distress and unexpected early death. Inductions in females may also mandate euthanization (Alvarez & Jensen, 2016). In contrast, the influence of patient’s sex on the severity of psoriasis is controversial. While female patients were found to significantly display milder psoriasis than male patients in two studies conducted in Swaziland and Sweden (Guillet et al., 2022; Hagg et al., 2017), this was contradicted by a third study (Goldburg et al., 2022).

Wang and others (Wang et al., 2020) investigated the effect of stress on imiquimod-induced psoriasis in a model of mice with emotional stress. In comparison with a control group with psoriasis kept off stress, stress was found to prolong the disease, to upregulate IL-1β, IL-17 and IL-22 gene expression and to increase IL-1β, IL-12, IL-17 and IL-22 secretion. This should further explain the role of stress in human psoriasis. For instance, stressful events were found to proceed psoriasis onset and were reported to trigger the disease in 31-88% of patients. Stress was also observed to aggravate psoriasis where daily stressors may expand the disease and worsens pruritus (Rigas et al., 2019; Rousset & Haloua, 2018). This is evident in pediatrics as well, where childhood trauma is commoner in patients with psoriasis, and likewise, children with psoriasis score higher in anxiety scores (Wintermann et al., 2022).

Obesity is known to exacerbate psoriasis in humans. This is also evident in imiquimod-induced psoriasis model where obese mice display thicker psoriatic lesions compared with non-obese subjects. Diet restriction partially improves psoriasis and cytokine profile (Hong et al., 2019; Kanemaru et al., 2015) and consistently, leptin deficiency attenuates the disease (Stjernholm et al., 2017). The relationship between human psoriasis and obesity was vigorously studied. A metaanalysis found the odd ratio of obesity in psoriasis is 1.66, and it can approach 2.23 in patients with severe disease (Armstrong et al., 2012). A systematic review did also conclude that seven out of nine studies found a statistically significant association between increased psoriasis severity and increased body mass index (Fleming et al., 2015). Such an association is attributed to a shared mechanism involving inflammatory mediators and adipokines (Jensen & Skov, 2016).

CONCLUSIONS

Imiquimod-induced psoriasis serves as an acceptable model to study IL-23/IL-17 axis and to screen pharmaceutical agents in psoriasis. While the model could be induced using two protocols, the original protocol described by van der Fits and others (van der Fits et al., 2009) is widely employed in different studies. To ensure consistency of results, researchers should take into account that variation in the brand of imiquimod 5% cream, strain of mice, sex of mice, exposure to stress and obesity may adversely modify the course of disease.

Declarations

Interest statement. Author declares no conflict of interest.

REFERENCES

Fujii K, Yamamoto Y, Mizutani Y, Saito K, Seishima M (2020) In-
doleamine 2,3-dioxygenase 2 deficiency exacerbates imiquimod-
https://doi.org/10.3390/ijms21155515
Goldstein J, Tang LC, Langhoff W, Jaffery KP, Goosheram M,
Jong EMD, Strober B (2022) Sex differences in moderate to se-
vere psoriasis: analysis of the psoriasis longitudinal assessment
org/10.1016/j.jpapa.2021.09.006
signaling in keratinocytes is mandatory in imiquimod-induced psori-
asis in mice. ARD 78: A1–A83. https://doi.org/10.1136/annrheum-
dis-2018-213342
10.4049/jimmunol.1801411
Hill RZ, Rifi Z, Vuong C, Bautista DM (2020) Loss of S1PR3 attenu-
https://doi.org/10.1111/exd.13687
Kawaguchi M, Oka T, Sugaya M, Suga H, Kimura T, Morimura S,
Deficiency of both L-selectin and ICAM-1 exacerbates im-
iquimod-induced psoriasis-like skin inflammation through increased
https://doi.org/10.1016/j.clim.2014.12.011
and monocyte-derived Langerhans cells are required for imiquimod-
https://doi.org/10.1016/j.jdermsci.2018.04.003
search: Different imiquimod creams resulting in different effects
for imiquimod-induced psoriatic mouse models. Exp Biol Med (May-
Deficient CCR2 expression of imiquimod-induced psoriasis-like skin
inflammation through increased infiltration of antigen presenting cells.
Moos S, Mohbienian AN, Waismann A, Kurschus FC (2019) Imqui-
moid-induced psoriasis models in mice depends on the IL-17 signaling
10.1016/j.jid.2019.06.001
Nakao M, Miyagaki T, Sugaya M, Sato S (2020) Exacerbated imiqui-
moid-induced psoriasis-like skin inflammation in IFN-γ-deficient mice.
protein (MxR7) in psoriatic epidermis: Evidence for a protective role
https://doi.org/10.1111/exd.13687
Kusuhara N, Kimoto A, Miyachi Y, Kabashima K (2016) Role of neutro-
philin the pathogenesis of imiquimod-induced psoriasis-like skin
j.jid.2016.03.018
Oishi N, Iwata H, Kambe N, Kubavashi N, Fujimoto K, Sato H, Hi-
factors of pruritus found in humans in an imiquimod-induced psori-
hjydi.2019.01.0981
Oka T, Sugaya M, Takahashi N, Takahashi T, Shibata S, Miyagaki T,
Asato Y, Sato S (2017) CXCL17 attenuates imiquimod-induced psoriasis-like
skin inflammation by recruiting myeloid-derived suppressor cells
https://doi.org/10.4049/jimmunol.1601607
Qin S, Wen J, Bai XC, Chen TY, Zheng RC, Zhou GB, Ma J, Feng
YW, Zhong BL, Li YM (2014) Endogenous n-3 polyunsaturated fatty
acids protect against imiquimod-induced psoriasis-like inflammation
via the IL-17/IL-23 axis. Med Mol Rat 2097–2104. https://doi.org/
10.3892/mmr.2014.2156
Rigas HM, Bucur S, Cuncu DH, Nita IE, Constantin MM (2019)
Psychological stress and psoriasis patients – a dermatologist’s perspective.
1165–1172. https://doi.org/10.1111/ijd.14032
Shibata S, Tada Y, Asato Y, Yanaba K, Sugaya M, Kaidono T, Kanda
N, Watanabe S, Sato S (2013) IL-27 activates Th1-mediated re-
ponses in imiquimod-induced psoriasis-like skin inflammation by recruiting
myeloid-derived suppressor cells and regulatory T cells. J Immunol 198:
3987–3998. https://doi.org/10.4049/jimmunol.1601607
Singh TP, Zhang HH, Wang ST, Farber JM (2019) IL-23- and im-
quimod-induced, biphasic mouse model of psoriasis. Exp Biol Med (May-
Steenrump TH, Oomen P, Langhilde A, Johansen C, Iversen I, Rosada
C, Stenderup K (2017) Leptin deficiency in mice counteracts im-
quimod (EQO)-induced psoriasis-like skin inflammation while leptin
stimulation induces inflammation in human keratinocytes. Exp Der-
Sumida H, Yanagida K, Kita Y, Abe J, Matsushima K, Nakamura M,
Ishi S, Sato S, shimizu T (2014) Interplay between CXCGR2 and
BLT1 facilitates neutrophil infiltration and resultant keratinocyte
activation in a murine model of imiquimod-induced psoriasis. J Im-
munol 192: 4361–4369. https://doi.org/10.4049/jimmunol.1302959
Swindell WR, Michaels KA, Sutter AJ, Diaconu D, Fritz Y, Xing X,
Imiquimod has strain-dependent effects in mice and does not uniquely
10.1111/exd.13149
Takahashi N, Torimaga M, Kosaka R, Kamata Y, Umehara Y, Mat-
suda H, Sakaguchi A, Ogawa H, Takamori K (2017) Involvement of
micro-opioid receptors and kappa-opioid receptors in itch-
threshold behaviour of imiquimod-induced psoriasis-like dermatitis in
2340/2015.0555.2704
Terborst D, Chelbi R, Wohl C, Malcosse C, Tamoutouneur S, Joqueru
transcriptional of skin and keratinocytes in an imiquimod-induced, biphasic mouse model of psoriasis. J Immunol 195:
4953–4961. https://doi.org/10.4049/jimmunol.1500551
Takamura K, Akiyama T, Inoue N, Higashi K, Saito K, Hasegawa
M (2016) Dermokit: An experimental imiquimod-induced psoriasis-
like skin inflammation model. J Invest Dermatol 84: e8–e180

Zhang J, Yang X, Hong Qiu, Chen W (2020) Weight loss may be unrelated to dietary intake in the imiquimod-induced plaque psoriasis mice model. *Open Life Sci.* **15**: 79–82