Cis-2 and trans-2-eicosenoic fatty acids are novel inhibitors for Mycobacterium tuberculosis protein tyrosine phosphatase A

Lalu Rudyat Telly Savalas1✉, Baiq Repika Nurul Furqan2, Dina Asnawati2, Jannatin ‘Ardhuwa3, Prapti Sedijani4, Saprizal Hadisaputra5, Baiq Nila Sari Ningsih1,1.5 and Jufrizal Syahri6

Small protein tyrosine phosphatase (PtpA) of Mycobacterium tuberculosis (Mt b) is attributed to the development of latent tuberculosis infections, and hence becomes an interesting target for drug development. In this communication, inhibition of PtpA by naturally occurring fatty acids: cis-2 and trans-2-eicosenoic acids is investigated. Mt b PtpA was heterologously expressed in Escherichia coli, and the activity of PtpA was inhibited by cis-2 and trans-2 eicosenoic fatty acids. Both compounds showed strong inhibition of PtpA activity, with IC50 at low micromolar concentrations. In comparison, trans-11-eicosenoic acid only slightly inhibited PtpA. In silico analysis confirmed the inhibition of PtpA by cis-2-eicosenoic acid by formation of several hydrogen bonds. These findings show that cis-2 and trans-2 eicosenoic fatty acids are potential candidates for latent tuberculosis inhibitors.

Key words: Mycobacterium tuberculosis, latent infection, protein tyrosine phosphatase A, cis-2 and trans-2 eicosenoic fatty acids

Received: 12 March, 2020; revised: 05 June, 2020; accepted: 05 June, 2020; available on-line: 18 June, 2020

✉e-mail: telly@unram.ac.id

Acknowledgements of Financial Support: LRTS, PS, SH and JA received funding through the INSINAS research funding from the Ministry of Research, Technology and Higher Education in fiscal year of 2016–2018. Abbreviations: CAD, computer aided drug discovery; MDR TB, multi-drug resistant tuberculosis; LAM, lipoarabinomannan; LTBI, latent TB infection; XDR TB, extensively drug-resistant TB; PknG, protein kinase G; PtpA, protein tyrosine phosphatase A

INTRODUCTION

Mycobacterium tuberculosis pathogen is one of the most devastating pathogens with high mortality all over the world. The death toll caused by this infection is worsened by increasing HIV infection cases. This figure is even more complicated by the development of antibiotic resistant strains: multi-drug resistant tuberculosis (MDR TB) and extensively drug-resistant TB (XDR TB). The battle against TB has an additional front, i.e. latent TB infection (LTBI). It is estimated that 1.7 billions of people, or approximately one quarter of the world’s population, are infected with these bacteria in the latent infection fashion (World Health Organization, 2019; Houben & Dodd, 2016), and 10% of those individuals develop active infection at a later stage of their life (Vynnycky & Fine, 2000; Stutz et al., 2018).

The ability of the bacteria to avoid the acidic lysosomal degradation within host macrophages has been recognized as one of the survival mechanisms of M. tuberculosis from phagolysosome degradation, and leads the bacterium to its latent phase (Pieters & Gatfield, 2002), where it further utilizes nutrition from its host for long term dormancy (Mali & Meena, 2018). Although several bacterial survival factors, such as the protein tyrosine phosphatases, bacterial lipoarabinomannan (LAM) and protein kinase G (PknG) have been extensively suggested to be involved in the latent infection (Li & Xie, 2011; Janssen et al., 2012), the mechanism by which latent TB infection develops into its active state is not fully understood. Nevertheless, inhibition of latency factors opens up the research field to combat bacteria even before latency is established.

Among the proteins associated with the development of latent TB infection is protein tyrosine phosphatase A (PtpA). This protein is known to be responsible for inhibition of fusion even between phagosome and lysosome. In a normal endocytosis pathway, once the bacterium is engulfed by the macrophage cell, the resulted mycobacterial-phagosome recruits host vacuolar-H+/ATPase (V-ATPase) that acidifies the endosome, a precondition required later when it fuses with the lysosome and thus ensuring that a suitable environment for hydrolytic enzymes of the lysosome is formed (Sun-Wada et al., 2009; Stutz et al., 2018; Upadhyay et al., 2018). However, bacterium develops a survival strategy by secreting PtpA that permeates the phagosome membrane and binds to the subunit H of V-ATPase in the macrophage cytosol. PtpA is also reported to dephosphorylate vacuolar sorting protein VPS33B which is required for the fusion of endocytic organelles. The binding of subunit H of V-ATPase and dephosphorylation of VPS33B by mycobacterial PtpA are concerted events that account for the hindrance of bacteria to enter phagolysosome degradation (Bach et al., 2008; Wong et al., 2011; Korb et al., 2016). PtpA was also reported to suppress the host innate immunity by regulating host gene expression (Wang et al., 2017). From this point of view, PtpA, along with other effector proteins, becomes an interesting target for anti-latent TB drug development.

Several attempts to discover novel drugs benefitted from the progress in the computer aided drug discovery (CAD). A recent example of this approach has been underlined by Zhang and co-workers who reported a thiobarbiturate compound as a novel Mtb PtpB inhibitor with an IC50 of 22.4 µM (Zhang et al., 2019). Furthermore, a thiosemicarbazone compound predicted by molecular modelling has been synthesized and revealed its inhibitory effect on Mtb PtpA with a low micromolar IC50 (Sens et al., 2018). A comprehensive review of in silico
The present study aims at testing the ability of trans-2-eicosenoic fatty acid to inhibit Mtb PtpA.

MATERIALS AND METHODS

Materials. Plasmid and Escherichia coli strains. Recombinant plasmid pET30b-PtpA was a kind gift from Prof. Yossef Av-Gay, University of British Columbia, Canada. The plasmid was maintained in Escherichia coli XL1-Blue, and for expression, E. coli BL21(DE3) was used. Bacteria were grown in LB medium containing 0.5% yeast extract, 1% NaCl, 1% bacto trypton and 30 µg/mL kanamycin (USB Biobasic). Agar LB medium was made by addition of 2% bacto agar. All ingredients were from major biochemical vendors.

Chemicals. All reagents for buffers were from major biochemical vendors. cis-2-eicosenoic and trans-2-eicosenoic fatty acids were purchased from Larodan AB (Sweden). trans-11-eicosenoic fatty acid and para-nitrophenyl phosphate were from Sigma-Aldrich.

Methods. Expression of Mtb protein tyrosine phosphatase A in E. coli. Recombinant plasmid pET30b-PtpA was introduced into competent E. coli BL21(DE3) cells by electroporation (Gene Pulser Electroporation Systems, Bio-Rad). For PtpA production, an overnight pre-culture of transformed cells was added to 250 mL LB medium in an Erlenmeyer flask containing kanamycin. Cells bearing PtpA gene at log phase (OD 600 of ca. 0.6) were induced by addition of 0.5 mM isopropyl beta-thiogalactose (IPTG, Sigma-Aldrich) and kept in a rotary shaker for 4 hours at 37°C, 250 rpm. Cells were harvested by centrifugation at 3500 rpm and cell pellet was resuspended in phosphate buffered saline (PBS: 137 mM NaCl, 2.7 mM KCl, 8 mM NaHPO 4 and 2 mM KH 2 PO 4) prior to lysis by 10 cycles of sonication (30 seconds sonication and 30 seconds pause). Clear lysate containing PtpA was obtained by centrifugation at 12000 rpm, 4°C for 30 min.

Protein concentration was determined by bicinchoninic acid (BCA kit, Thermo scientific). Sodium dodecyl sulfate polyacrylamide gel electrophoresis was performed to show the expression of PtpA in E. coli. Samples were subjected to electrophoresis in 12.5% polyacrylamide gel.

The activity PtpA was tested for its phosphatase activity against para-nitrophenyl phosphate (p-NPP) as described from (Mascarello et al., 2013). Reaction mixture contained 6 mM pNPP substrate and 100 µM imidazole was added to final volume of 180 µL, followed by pre-incubation at 37°C for 5 minutes prior to addition of 20 µL of PtpA (1 µg/µL). Reaction was allowed to proceed and the resulted para-nitrophenol was measured at 410 nm every 2 minutes for 30 minutes.

Inhibition of PtpA by eicosenoic fatty acids. To test the inhibitory effect of eicosenoic fatty acids, PtpA was allowed to hydrolyze substrate para-nitrophosphoryl phosphate in the absence or presence on various concentrations of trans-2-eicosenoic acid, cis-2-eicosenoic acid, and trans-11-eicosenoic acid, ranging from 0 µM to 30 µM, for 30 minutes at 37°C. Lysate of untransformed E. coli BL21 was used as control in each experiments.

The inhibitory effect of eicosenoic fatty acid isomers on the activity of PtpA was depicted as the decrease in absorbance (A410 nm) by the increment concentration of eicosenoic fatty acids. The IC 50 values for each eicosenoic fatty acid were calculated with the use of Prism 7 (GraphPad).

Docking. Interaction of eicosenoic fatty acids with PtpA that lead to inhibitory of phosphatase activity was analyzed with the Discovery studio (Accelrys, San Diego, CA, USA). The PtpA protein that contains native ligand glyceral (PDB accession number 1U2Q) was used for docking with each of the eicosenoic fatty acids. Ligands, i.e. the eicosenoic fatty acids, were prepared by Chemdraw (Fig. 1B).

RESULTS

Expression of PtpA in E. coli

PtpA, cloned into the pET30b plasmid, was successfully expressed in E. coli BL21(DE3) under T7 promoter and induced by 0.5 mM isopropyl beta-thiogalactose (IPTG) as described by Studier and others (Studier et al., 1990). PtpA appears as a protein of c.a. 18 kDa (Fig. 1A), which is in agreement with another report (Chiaradia et al., 2008). Activity of overexpressed PtpA was assayed by measuring its ability to hydrolyze para-nitro-

Figure 1. A. In each lane, 20 µg of samples were loaded onto 4.5% focusing gel and 12.5% resolving polyacrylamide gel for separation.

Overexpressed PtpA in Escherichia coli BL21(DE3) appears as a major band at 18 kDa which corresponds to PtpA (lane 2). Lane 1 is uninduced sample. B. Three isomers of eicosenoic fatty acid structures generated by Chemdraw, tested for their inhibitory effect on Mtb PtpA activity: trans-2-eicosenoic acid, cis-2-eicosenoic acid and trans-11-eicosenoic acid.

Inhibition of PtpA by various concentrations of eicosenoic fatty acids

Figure 2. Inhibition study of overexpressed PtpA with increasing concentration of eicosenoic fatty acids (ESA) at 0, 8, 16 and 30 µM. The trans-2-eicosenoic and cis-2-eicosenoic strongly inhibit PtpA, whereas trans-11-eicosenoic acid only slightly inhibits PtpA. All measurements were performed twice and data were normalized to the control E. coli lysate. IC 50 values of PtpA inhibition by trans-2, cis-2 and trans-11 eicosenoic acid were calculated with the Prism 7 software (GraphPad) and it was revealed that the IC 50 values were 11.26, 8.20 and 27.97 µM for trans-2, cis-2 and trans-11-eicosenoic fatty acid, respectively. ESA, Eicosenoic Fatty Acid.
Vol. 67 221

Cis-2 and trans-2-eicosenoic fatty acids are novel inhibitors for Mycobacterium tuberculosis

Inhibition of PtpA with eicosenoic fatty acids. Inhibition of PtpA by trans-2 and cis-2-eicosenoic acids is shown in Fig. 2. It is shown that the trans-2 eicosenoic acid, and to a higher extent the cis-2-eicosenoic acid, are capable of inhibiting PtpA.

Docking analysis. Interaction study of PtpA with the cis-2-eicosenoic acid is depicted in Fig. 3. The fatty acid shows interaction with four amino acid residues of PtpA, i.e. Asn_{14}, Ile_{15}, Cys_{16} and Arg_{17}, with binding energy of -37.1939 kcal/mol. Strong interaction of PtpA is also found with trans-2-eicosenoic acid via two potential amino acid residues, i.e. Thr_{12}, Gly_{13}, and to a lesser degree with Arg_{17}. On the other hand, docking of PtpA with trans-11-eicosenoic acid reveals it to be prone to have weaker interaction in terms of both the energy and the distance of amino acid residues, which is in agreement with the inhibition assay results. Binding parameters of the tested eicosenoic fatty acids are summarized in Table 1.

DISCUSSION

The role of phosphatases in the progress of infection has been of interests of many researchers, since these proteins are identified in various bacterial pathogens, such as Listeria monocytogenes, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Streptococcus agalactiae, Streptococcus pyr-

Table 1. Energy and binding interaction of co-crystalized Mtb PtpA (1U2Q) with eicosenoic fatty acids

<table>
<thead>
<tr>
<th>Compound</th>
<th>cDocking energy (kcal/mol)</th>
<th>Binding interaction (amino acid residue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis-2-eicosenoic acid</td>
<td>-37.1939</td>
<td>Asn_{14}, Ile_{15}, Cys_{16}, Arg_{17}</td>
</tr>
<tr>
<td>trans-2-eicosenoic acid</td>
<td>-33.0076</td>
<td>Thr_{12}, Gly_{13}, Arg_{17}</td>
</tr>
<tr>
<td>trans-11-eicosenoic acid</td>
<td>-28.3423</td>
<td>Gly_{13}, His_{49}</td>
</tr>
</tbody>
</table>

Figure 3. A and B: Docking analysis of PtpA inhibition by cis-2-eicosenoic acid. Four amino acid residues of PtpA are in close proximity to the cis-2-eicosenoic acid. C and D: Docking analysis of PtpA inhibition with trans-2-eicosenoic acid. Three amino acids are in close proximity to trans-2-eicosenoic acid.
The study presented here employs an in silico approach to investigate whether these compounds bind specifically to the Mtb’s phosphatase by comparing their inhibitory effects to the Mtb’s phosphatase. The study areas could include identification of host interacting partners and be followed by elucidation of the downstream interferences they cause. The next immediate interest, unsurprisingly, is to find a way to inhibit the secreted bacterial phosphatases, and thus prevent their involvement in the development of infections and diseases.

As TB remains a global concern that belongs to one of the main targets in the Sustainable Development Goal (SGD) in health, prevention of latent TB turns to be one of the focal points, in addition to other TB eradication efforts, such as development of new vaccines, novel drugs, as well as improvement of diagnosis. Our current knowledge on roles of mycobacterial phosphatase effectors that are secreted by Mtb into its host’s cells enroute its degradation pathway has led researchers to explore inhibitors of Mtb phosphatases. The endeavour to seek new potential inhibitors for Mtb virulence proteins and drugs against TB is nowadays approached by different strategies. Among those strategies are direct screening of natural compounds, in silico screening of phosphatase inhibitors, and synthesis of novel compounds or modified compounds predicted to be able to inhibit Mtb phosphatases.

The study presented here employs an in silico report that has underlined the potential inhibitory effect of trans-2-eicosenoic fatty acid on Mtb PtpA (Dhanjal et al., 2014). Our data confirmed for the first time that trans-2-eicosenoic fatty acid strongly inhibits PtpA, with an IC50 of 11.26 µM. Interestingly, its cis isomer (cis-2-eicosenoic fatty acid) showed an even stronger inhibition to PtpA, with an IC50 of 8.20 µM. The ability of these eicosenoic acids to inhibit PtpA is comparable to the other PtpA potential inhibitors, such as chalcone derivatives (Mascarello et al., 2010; Chiaradia et al., 2012) whose IC50 ranging from 8.4 to 53.7 µM, and analogues of natural products stevastelin, roseofilin and prodigiosins, whose IC50 values ranging from 8.8 to 28.7 µM (Manger et al., 2005). In contrast, the trans-11-eicosenoic acid isomer of those compounds showed a much higher IC50 value, i.e. 27.97 µM and only slightly inhibited PtpA (Fig. 2). The fact that both trans-2 and cis-2 eicosenoic acids strongly inhibit PtpA, whereas trans-11 does not, shows that the double bond position contributes more to the inhibitory effect of the eicosenoic acids than its cis or trans stereochemistry (Fig. 2). It is somehow surprising that a small molecule such as eicosenoic acid, rather than complex inhibitors as many researchers have reported, strongly interacts with PtpA.

CONCLUSIONS

These findings show that both, the cis-2 and trans-2-eicosenoic fatty acids are potential candidates for PtpA inhibitors. A further study is deemed necessary in order to investigate whether these compounds bind specifically to the Mtb’s phosphatase by comparing their inhibitory effects on human phosphatases. Additionally, it is also important to employ an assay to prove whether these compounds are capable of preventing Mtb latent infection in vivo.

Acknowledgments

Authors thank Prof. Yossef Av-Gay, University of British Columbia, Canada, for kindly providing the pET30b-PtpA recombinant plasmid. Authors also thank Siti Rosidah from the Bioscience and Biotechnology Research Center, University of Maramat, for technical assistance.

Conflicts of Interest

All authors declare no conflict of interest.

REFERENCES

Sutz MD, Clark MP, Duerlinger M, Pellegreti M (2018) Mycobacterium tuberculosis: Rewiring host cell signaling to promote in...
Vol. 67
Cis-2 and trans-2-eicosenoic fatty acids are novel inhibitors for *Mycobacterium tuberculosis*

World Health Organization (2018) *Global Tuberculosis Report*