A ssociation of HindIII-polymorphism in kappa-casein gene with milk, fat and protein yield in holstein cattle*

* Preliminary report presented: Association of kappa-casein gene polymorphism with milk yield, fat and protein in holsteincattle. 6th Central European Congress of Life Sciences. EUROBIOTECH, 11–14 September, 2017, Kraków, Poland

  • Martina Miluchová Department of Genetics and Breeding Biology, Slovak University of Agriculture in Nitra, Tr. A Hlinku, 2, 949 76 – Nitra, Slovakia
  • Michal Gábor
  • Juraj Candrák
  • Anna Trakovická
  • Kristína Candráková

Abstract

The aim of the paper was to evaluate the effect of genetic polymorphism of kappa-casein on the milk production in Holstein cattle. A total 210 cows of Holstein cattle were use in this study. On the basis of PCR-RFLP analyses we established genotype structure of cattle population and calculated allelic frequencies. In Holstein cattle population was detected all three genotypes – AA (69.52%), AB (27.62%) and BB (2.86%). The frequency of allele A was 83.33% and allele B was 16.67%. Effectiveness of allele incidence and genetic diversity was evaluated with following parameters: theoretical heterozygosity (Heexp), experimental heterozygosity (Heobs), polymorphism information content (PIC), expected homozygosity (E), effective number of alleles (ENA), level of possible variability realization (V%). The Holstein cattle kept in Slovak Republic exhibit high value of homozygosity and low values of polymorphism information content, effective number of alleles and level of possible variability realization. The effect of polymorphism of CSN3 gene on average breeding values for milk production traits as the yield of milk, fat and protein in kilograms as well as contents of fat and protein in percentages was detected using by the packed SAS 9.3 of SAS Enterprise Guide 5.1. We detected statistical significant difference between genotypes only at an average breeding value for the percentage of protein in milk during assessment the variability of observed traits in depending on polymorphism of CSN3 gene. For other breeding values the impact of individual genotypes CSN3 gene on their variability was not observed.

References

Alipanah M, Klashnikova L, Rodionov G (2007) K-casein genotypic frequencies in Russian breed Black and Red Pied cattle. Iran J Biotechnol 3:191-194.

Azevedo ALS, Nascimento CS, Steinberg RS, Carvalho MRS, Peixoto MGCD, Teodoro RL, Verneque RS, Guimarães SEF, Machado MA (2008) Genetic polymorphism of the kappa-casein gene in Brazilian cattle. Gen Mol Res 7:623-630. http://doi.org/10.4238/vol7-3gmr428

Boltstein D, White RL, Skolnik M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Amer J Hum Genet 32:314-331.

Botaro, BG, De Lima YVR, Cortinhas CS, Silva LFPE, Rennó FP., Dos Santos MV (2009) Effect of the kappa-casein gene polymorphism, breed and seasonality on physicochemical characteristics, composition and stability of bovine milk. R Bras Zootec 38:2447-2454. http://dx.doi.org/10.1590/S1516-35982009001200022

Brka M, Hodžić A, Reinsch N, Zečević E, Dokso A, Djedović R, Rukavina D, Kapur L, Vegara M, Šabanović M, Ravić I (2010) Polymorphism of the kappa-casein gene in two Bosnian autochthonous cattle breeds. Arch Tierz 53:277-282.

Brody RJ, Kern SE (2004) Sodium boric acid: a Tris-free, cooler conductive medium for DNA electrophoresis. Biotechniq 36:214-216.

Bulla J, Chrenek P, Michalcová A, Krupová Z, Szarek J, Bulla R, Ladyková M, Adamczyk K (2007) Influence of -Casein and β -Lactoglobulin genes on milk yield, milk composition and technological properties of the different cattle breeds. Biotech 54:60.

Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M (2007) Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur J Lipid Sci Technol 109:828–855. http://doi.org/10.1002/ejlt.200700080

Crow JF, Kimura M (1970) An introduction to population genetics theory. Burgess Publishing, Minneapolis

Dewhurst RJ, Shingfield KJ, Lee MRF, Scollan ND (2006) Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim Feed Sci Technol 131:168–206. https://doi.org/10.1016/j.anifeedsci.2006.04.016

Dinc H, Ozkan E, Koban E, Togan I (2013) Beta-casein A1/A2, kappa-casein and beta-lactoglobulin polymorphisms in Turkish cattle breeds. Arch Tierz 56:650-657 https://doi.org/10.7482/0003-9438-56-065.

Doosti A, Arshi A, Vatankhah M, Amjadi P (2011) Kappa-casein gene polymorphism in Holstein and Iranian native cattle by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). African J Biotech 10:4957-4960. https://doi.org/10.5897/AJB10.2565

Gálik B, Šimko M, Juráček M, Bíro D, Horniaková E, Rolinec M, Pastierik O, Kolesárová A, Maiorano G, Gambacorta M, Tavaniello S, Bednarczyk M (2011) Biotechnology and animal food quality. SPU, Nitra ISBN 978-80-552-0708-7.

Gautschi B, Müller JP, Schmid B, Shykoff JA (2003) Effective number of breeders and maintenance of genetic diversity in the captive bearded vulture population. Heredity 91:9–16. https://doi.org/10.1038/sj.hdy.6800278

Gouda EM, Galal MK, Abdelaziz SA (2013) Genetic Variants and Allele Frequencies of Kappa Casein in Egyptian Cattle and Buffalo Using PCR-RFLP. J Agric Sci 5:9752-9760. http://dx.doi.org/10.5539/jas.v5n2p197

Hamza AE, Wang XL, Yang ZP (2010) Kappa Casein Gene Polymorphism in Holstein Chinese Cattle. Pak Vet J. 30:203-206.

Kučerová J, Matějíček A, Jandurová OM, Sørensen P, Němcová E, Štípková M, Kott T, Bouška J, Frelich J (2006) Milk protein genes CSN1S1, CSN2, CSN3, LGB and their relation to genetic values of milk production parameters in Czech Fleckvieh. Czech J Anim Sci 51:241–247.

Kučerová J, Němcová E, Štípková M, Vrtková I, Dvořák J, Frelich J, Bouška J, Maršálek M (2004) The influence of markers CSN3 and ETH10 on milk production parameters in Czech pied cattle. J Central Europ Agric 5:303-308. http://dx.doi.org/10.5513/jcea.v5i4.230

Kumar D, Gupta N, Ahlawat S, Satyanarayana R, Sunder S, Gupta S (2006) Single strand confirmation polymorphism (SSCP) detection in exon I of the lactalbumin gene of Indian Jamunapri milkgoats (Capra hircus). Genetic Mol Biol 29:271-274. http://dx.doi.org/10.1590/S1415-47572006000200016

Litwińczuk A, Litwińczuk Z, Barłowska J, Florek M (2004) Surowce zwierzęce, ocena i wykorzystanie, PWRiL, Warszawa. 59 p.

Marchitelli C, Contarini G, De Matteis G, Crisà A, Pariset L, Scatà MC, Catillo G, Napolitano F, Moioli B (2013) Milk fatty acid variability: effect of some candidate genes involved in lipid synthesis. J Dairy Res 80:165–173. https://doi.org/10.1017/S002202991300006X

Miluchová M, Trakovická A, Gábor M (2009) Molecular-genetic detection of genes CSN3 and LGB in population of Slovak Pinzgau breed by multiplex PCR-RFLP method. Acta fytotech zootech Special issue: 450-454.

Miluchová M, Gábor M, Trakovická A (2014) Analysis of genetic structure in Slovak Pinzgau cattle using five candidate genes related to milk production traits. GENETIKA 46:865-875. https://doi.org/10.2298/GENSR1403865M

Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA 70, 3321–3323.

Patel RK, Chauhan JB, Singh KM, Soni KJ (2007) Allelic Frequency of Kappa-Casein and Beta-Lactoglobulin in Indian Crossbred (Bos taurus × Bos indicus) Dairy Bulls. Turk J Vet Anim Sci 31:399-402.

Rachagani S, Gupta ID, Gupta N, Gupta SC (2006) Genotyping of β-Lactoglobulin gene by PCR-RFLP in Sahiwal and Tharparkar cattle breeds. BMC Genet 31:1-4. https://doi.org/10.1186/1471-2156-7-31

Riaz MN, Malik NA, Nasreen F, Qureshi JA (2008) Molecular marker assisted study of kappa-casein gene in Nili-ravi (buffalo) breed of Pakistan. Pakistan Vet J 28:103-106.

Robitaille G, Britten M, Morisset J, Petitclerc D (2002) Quantitative analysis of -lactoglobulin A and B genetic variants in milk of cows -lactoglobulin AB throught lactation. J Dairy Res 69:651-654. https://doi.org/10.1017/S0022029902005733

SAS Institute Inc. (2011), Administering SAS® Enterprise Guide® 5.1. Cary, NC: SAS Institute Inc, Version 9.3

Šimko M, Bíro D, Juráček M, Gálik B, Rolinec M (2014) Nutrition and feeding as a critical point of milk production. In Chrenek P: Biotechnology and animal food quality. SPU, Nitra, 137 p. ISBN 978-80-552-1198-5

Sitkowska B, Neja W, Wiśniewska E (2008) Relations between kappa-casein polymorphism (csn3) and milk performance traits in heifer cows. J Cent Eur Agric 9:641-644. http://dx.doi.org/10.5513/jcea.v9i4.716

Šťastná D, Šťastný P (2015a) Microstructural changes of cows uterus in an infection caused by Haemophilus somnus. J Cent Eur Agric 16:269-288. http://dx.doi.org/10.5513/JCEA01/16.3.1620

Šťastná D, Šťastný P (2015b) Popôrodný anestrus kráv. SPU, Nitra, 132 p. ISBN 978-80-552-1310-1

Šťastná D, Šťastný P (2016) Vplyv tepelného stresu na reprodukciu a produkciu kráv, SPU, Nitra, 72 p. ISBN 978-80-552-1562-4

Stoop WM, Schennink A, Visker MHPW, Mullaart E, Van Arendonk JAM, Bovenhuis H (2009) Genome-wide scan for bovine milk-fat composition: I: quantitative trait loci for short- and medium-chain fatty acids. J Dairy Sci 92:4664–4675. https://doi.org/10.3168/jds.2008-1966

Vidra A, Kovalčík E, Bučko O, Vaňo M (2000) Analýza mliekovej úžitkovosti vo vybratých chovoch pinzgauského dobytka. Zborník „Aktuálne problémy riešené v Agrokomplexe“, Nitra, s. 111-113. ISBN 80-7137-801-1

Vidra A, Kovalčík E, Bučko O, Vaňo M (2001) Mlieková úžitkovosť vo vybraných chránených chovoch pinzgauského dobytka. IV. Odborný seminár doktorandov

a študentov „Genetika a šľachtenie zvierat“. Přerov, Česká republika, 14.9.2001, s. 108-110. ISBN 80-7157-532-1

Ziemiński R, Juszczak J, Czarnik U, Ćwikła A, Zabolewicz T, Walawski K (2005) Związek między polimorfizmem białek mleka i zróżnicowaniem wydajności oraz składu mleka krów utrzymywanych w stadzie bydła rasy zarno-białej Kombinatu Rolnego Kietrz. Acta Scient Pol Zoot 4:163–170.

Published
2018-09-15
Section
Articles